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1. Suppose we have data points x1, . . . ,xn, each of which is a Rd vector. We assume
that the data points follow the generative process

xi ∼ N (Whi, I), (1)

where h1, . . . ,hn is another set of known vectors.

As a reminder, when we write x ∼ N (µ,Σ), it means

p(x) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(xi − µ)⊤Σ−1(xi − µ)

)
. (2)

You might also need

∂x⊤a

∂x
= a

∂a⊤Aa

∂a
= (A+ A⊤)a. (3)

a) Show that the log likelihood is

L =
n∑

i=1

[
−d
2
log(2π)− 1

2
∥xi −Whi∥2

]
. (4)

[3 marks ]

b) Suppose h1, . . . ,hn are vectors produced by a neural network, and we need
to train the network with back-propagation. What is gradient with respect
to hi for any i = 1, . . . , n? [4 marks ]

c) Derive the Hessian of the likelihood with respect to hi. Show that the neg-
ative of the Hessian is positive semidefinite, meaning that the log likelihood
is concave in hi. [4 marks ]

d) IfW⊤W is invertible, show that the optimal solution for hi is (W
⊤W )−1W⊤xi.

[4 marks ]
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2. Answer the following questions about clustering and dimensionality reduction.

a) Suppose there is a data set of two classes. The two classes are well sepa-
rated, meaning that there is a hyperplane that can separate the two classes.
Suppose we use PCA to project the data points to a 2-dimensional space.
We do not observe distinct clusters in this 2-dimensional space. Discuss how
this can happen. Use simple plots to justify your answer. [4 marks ]

b) Consider the following data set with 3 points in 2-dimensional space. Each
point is of the same distance to the other two points.

Recall that when the k-means algorithm converges, the centroids and the
assignments of each point to the centroids would not change after subsequent
updates. If we run k-means with k = 2 on this data set, how many solutions
would the k-means algorithm converges to? Draw the solutions that the k-
means algorithm converges to, including the three points and using crosses
× to indicate where the two centroids are. [4 marks ]

c) A Gaussian mixture model (GMM) with K components assumes a one-hot,
latent vector z = [z1, . . . , zK ], meaning that

∑K
k=1 zk = 1 and zk ∈ {0, 1}

for k = 1, . . . , K. The element zi = 1 when the i-th component is chosen.
The values π1, . . . , πK are the prior probability for choosing one of the K
components. In other words, the probability of z can be written as

p(z) =
K∏
k=1

πzk
k , (5)

Component i in GMM is a Gaussian with mean µi and covariance Σi. The
conditional probability of observing a sample x from a component z is

p(x|z) =
K∏
k=1

N (x|µk,Σk)
zk . (6)

Show that the marginal distribution p(x) is of form

p(x) =
K∑
k=1

πkN (x|µk,Σk). (7)

[4 marks ]

d) When training a GMM with 2 components on the three-point data set above,
you realize the log likelihood becomes nan. What could be the reason for
this? [3 marks ]
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3. Recall that in binary classification, the input type is Rd and the output type is
{+1,−1}. A linear classifier can be written as

f(x) =

{
+1 if w⊤ϕ(x) ≥ 0

−1 if w⊤ϕ(x) < 0
(8)

where ϕ is a feature function.

You are working on a term project with two other friends. One is excited about
using hinge loss to train linear classifiers, and wants to understand the loss better.
The hinge loss is defined as

ℓhinge(w;x, y) = max(0, 1− yw⊤ϕ(x)). (9)

You all know that if ℓ(w) is a convex function, then

ℓ(αw1 + (1− α)w2) ≤ αℓ(w1) + (1− α)ℓ(w2) (10)

for any 0 ≤ α ≤ 1.

a) Show that the hinge loss is an upper bound on the zero-one loss

ℓ01(w;x, y) = I[yw⊤ϕ(x) < 0], (11)

where I[c] = 1 if c is true, and 0 otherwise. [4 marks ]

b) Is the hinge loss differentiable? If you think it is, derive the derivative of
hinge loss with respect to w. If you think it is not, provide a point where
the derivative does not exist, and provide a subgradient at that point. [3 marks ]

c) A linear classifier is sometimes written as

g(x) = argmax
y∈{+1,−1}

w⊤ψ(x, y). (12)

Show that if we choose ψ(x, y) = 1
2
yϕ(x), then g(x) = f(x) for all x. [5 marks ]

d) The other friend discovers a new loss function

ℓnew(w;x, y) = max
ŷ∈{+1,−1}

(
I[yŷ < 0]−w⊤ψ(x, y) +w⊤ψ(x, ŷ)

)
. (13)

Show that this loss function is the same as the hinge loss. [4 marks ]

We now know the properties of the loss, and a model can be trained. Once the
training is done, you obtain the following plot, the error rates on the test set.
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After looking at the plot, one of your friends concludes that the model must be
overfitting, while the other friend is not convinced.

e) What, if any, would you conclude from this plot? Why? [2 marks ]

To further study this problem, you plot the error rates on the training set.

After looking at the plot, one friend thinks this is definitely overfitting, and sug-
gets you explore regularizers. The other friend is not convinced, and suggests you
tune the step size of the training algorithm to see if the models are underfitting.

f) What would you do in this case? Why? [2 marks ]


