FOR INTERNAL SCRUTINY (date of this version: 11/7/2024)

UNIVERSITY OF EDINBURGH COLLEGE OF SCIENCE AND ENGINEERING SCHOOL OF INFORMATICS

INFR10086

Monday 23rd December 1963

20:00 to 23:29

INSTRUCTIONS TO CANDIDATES

- 1. Note that ALL QUESTIONS ARE COMPULSORY.
- 2. DIFFERENT QUESTIONS MAY HAVE DIFFERENT NUMBERS OF TOTAL MARKS. Take note of this in allocating time to questions.
- 3. This is a NOTES PERMITTED examination: candidates may consult up to THREE A4 pages (6 sides) of notes. CALCULATORS MAY NOT BE USED IN THIS EXAMINATION.

Year 3 Courses

Convener: ITO-Will-Determine External Examiners: ITO-Will-Determine

THIS EXAMINATION WILL BE MARKED ANONYMOUSLY

- 1. For this question, we will look at properties of a two-layer neural network with rectified linear units (ReLUs).
 - (a) A multilayer perceptron typically uses the sigmoid function

$$\sigma(x) = \frac{1}{1 + \exp(-x)} \tag{1}$$

as the activation function. Show that the sigmoid function is *not* convex. [4 marks]

(b) A rectified linear unit (ReLU) is an activation function of the form

$$\operatorname{ReLU}(x) = \begin{bmatrix} \max(0, x_1) \\ \max(0, x_2) \\ \vdots \\ \max(0, x_d) \end{bmatrix}.$$
(2)

Show that ReLU is convex.

(c) For *n* functions f_1, \ldots, f_n , in which $f_i \in \mathbb{R}^d \to \mathbb{R}$, a non-negative weighted sum of them is a function *g*, such that

$$g(x) = \lambda_1 f_1(x) + \lambda_2 f_2(x) + \dots + \lambda_n f_n(x), \qquad (3)$$

for all $x \in \mathbb{R}^d$, where $\lambda_1, \ldots, \lambda_n \geq 0$. Show that for *n* convex functions f_1, \ldots, f_n , in which $f_i \in \mathbb{R}^d \to \mathbb{R}$ for $i = 1, \ldots, n$, their non-negative weighted sum is convex. [4 marks]

(d) Consider a two-layer neural network of the form

$$f(x) = w^{\top} \operatorname{ReLU}(Vx). \tag{4}$$

This neural network is parameterized by w and V.

- i. Show that regardless of what w is, this network is convex in w. [2 marks]
- ii. Show that when w is element-wise non-negative, i.e., $w_1, \ldots, w_d \ge 0$, this network is convex in V. [6 marks]
- 2. Consider the following 2D data set that containts two points x_1 and x_2 (labeled \bullet).

(a) If the centroids do not change after further k-means updates, we say that the centroids have reached a local optimum. Suppose we initialize k-means with the two centroids c_1 and c_2 (labeled \blacktriangle in the figure below), one of which is exactly at the center of the two points while the other is significantly further away from both points.

[QUESTION CONTINUES ON NEXT PAGE]

[4 marks]

[QUESTION CONTINUES FROM PREVIOUS PAGE]

Show that this initialization is a local optimum of k-means.

(b) Suppose we initialize k-means with the two centroids c_1 and c_2 (labeled \blacktriangle in the figure below).

Where would the centroids be if we run k-means until it reaches a local optimum?

- (c) Based on the above results, which local optimum has a better k-means objective? Can we conclude that all local optima of the k-means objective are the global optimum?
- (d) When training a Gaussian mixture model (GMM) with expectation maximization (EM), if the mean vectors do not change after further updates, we say that EM have reached a local optimum.

Suppose we initialize a two-component GMM with two mean vectors μ_1 and μ_2 (labeled \blacktriangle in the following figure), one of which is exactly at the center of the two points while the other is significantly further away from both points.

Show that this initialization is *not* a local optimum of EM.

3. In this question, we will look at the connection between linear regression and the Gaussian distribution.

Recall that a 1D Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$ has a density function

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right).$$
 (5)

In linear regression, we assume that $y \sim \mathcal{N}(w^{\top}x, 1)$, where w is the weight vector. For simplicity, there is no bias term.

[QUESTION CONTINUES ON NEXT PAGE]

[4 marks]

[4 marks]

[4 marks]

[QUESTION CONTINUES FROM PREVIOUS PAGE]

(a) Given an i.i.d. training set $(x_1, y_1), \ldots, (x_n, y_n)$, each of which follows $y_i \sim \mathcal{N}(w^{\top} x_i, 1)$, show that the log-likelihood is

$$\log \prod_{i=1}^{n} p(y_i | x_i) = -\frac{n}{2} \log(2\pi) - \frac{1}{2} \sum_{i=1}^{n} (y_i - w^{\top} x_i)^2.$$
 (6)
[4 marks]

- (b) Given a training set $(x_1, y_1), \ldots, (x_n, y_n)$, discuss how maximizing the loglikelihood is equivalent to solving the mean-square error. [2 marks]
- (c) Consider a data set $(x_1, y_1), \ldots, (x_n, y_n)$, where $x_i = x_0$. In other words, all samples in the data set share the same input while having potentially different output.
 - i. Show that

$$\nabla_w \log \prod_{i=1}^n p(y_i | x_i) = \left(\sum_{i=1}^n y_i - n w^\top x_0\right) x_0. \tag{7}$$

ii. Show that the optimal solution in this case is any w that satisfies

$$w^{\top} x_0 = \frac{1}{n} \sum_{i=1}^n y_i.$$
 (8)

[4 marks]