
INFR10086 Machine Learning (MLG) Semester 2, 2024/5

Practice Exam

1. In this question, we will look at the hinge loss for binary classification. Recall that a linear
classifier has the form

f(x) =

{
+1 if w⊤x ≥ 0

−1 otherwise
(1)

The hinge loss for binary classification with linear classifier is defined as

Lhinge(x, y;w) = max(1− yw⊤x, 0), (2)

where x ∈ Rd and y ∈ {+1,−1}.

(a) Show that the hinge loss is an upper bound of the zero-one loss

L01(x, y;w) = 1yw⊤x<0. (3)

In other words, show that

L01(x, y;w) ≤ Lhinge(x, y;w) (4)

for all x ∈ Rd, y ∈ {+1,−1}, and w ∈ Rd.

(b) In the following three steps, we will look at the convexity of hinge loss.

(i) Show that

max(a+ b, c+ d) ≤ max(a, c) + max(b, d) (5)

for any a, b, c, d ∈ R.
(ii) Let

h(x) = max(f(x), g(x)) (6)

for any two convex functions f and g. Use (b) and show that h is convex in x.

(iii) Use (c) and show that the hinge loss Lhinge is convex in w for any x ∈ Rd and
y ∈ {+1,−1}.

(c) If we happen to find a linear classifier that achieves a hinge loss of 0 on a data set, what
does that tell us about the optimal value of log loss on that particular data set?
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2. In this question, we are going to implement a layer called layer normalization in a neural
network library. Formally, layer normalization is a function

f(x) =


x1−µ
σ

x2−µ
σ
...

xd−µ
σ

 (7)

where

µ =
1

d

d∑
i=1

xi σ2 =
1

d

d∑
i=1

(xi − µ)2 (8)

(a) Show that

σ2 =
1

d

d∑
i=1

x2i − µ2. (9)

(b) The forward function is as defined, and is straightforward to implement. The back-
ward function (as part of the backpropagation) is more involved. Given the forward
computation, the backward computation can be worked out using the total derivative

∂L

∂xj
=

d∑
i=1

∂L

∂fi

∂fi
∂xj

+
∂L

∂µ

∂µ

∂xj
+

∂L

∂σ

∂σ

∂xj
, (10)

where fi is a shorthand for the i-th coordinate of f(x) and L is the loss function. Note
that ∂L/∂fi will be given during backpropagation. Our goal is the derive the rest of the
terms.

i. Show that

∂µ

∂xj
=

1

d
. (11)

ii. Show that

∂fi
∂xj

=
1

σ
1i=j , (12)

where 1c is 1 when c is true and 0 otherwise.

iii. Show that

∂σ

∂xj
=

1

σd
xj (13)

iv. Show that

∂L

∂σ
=

d∑
i=1

∂L

∂fi

(
−xi − µ

σ2

)
. (14)
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v. Show that

∂L

∂µ
=

d∑
i=1

∂L

∂fi

(
−1

d

)
+

∂L

∂σ

(
−µ

σ

)
. (15)

3. Suppose we have a data set organized as a matrix X where each row vector is a sample point.
We know that the first principal component of X is a vector w1 such that

w1 = argmax
w

w⊤X⊤Xw

w⊤w
(16)

(a) Show that if w1 is the optimal solution for maxw
w⊤X⊤Xw

w⊤w
, then aw1 is also an optimal

solution for any a ̸= 0.

(b) Suppose we rotate the entire data set by a rotation matrix R, where R⊤R = I. Show that
if w1 is the first principal component of X, then Rw1 is the first principal component of
the rotated data set XR.
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