
INFR10086 Machine Learning (MLG) Semester 1, 2022/23

Coursework 1

1 Submission

• Submit your coursework on gradescope.1

• Due: 7 Nov, 2022 at noon, 12:00pm

2 Questions

1. Answer the following questions about information theory.

a) Variance is defined as Var[x] = E[(x− E[x])2]. Show that Var[x] = E[x2]− (E[x])2.
[6 marks]

b) Entropy of a random variable x is defined as E[− log p(x)]. Show that if x is Gaussian,
i.e., x ∼ N (µ, σ2), its entropy is

E[− log p(x)] =
1

2
log(2πσ2) +

1

2
. (1)

(Hint: The derivation is a lot simpler if you use the linearity of expectation and the
above fact. In particular, σ2 = E[x2]− µ2.)

[6 marks]

c) Based on the above, can entropy be negative?

[3 marks]

2. Answer the following questions about optimization.

a) Is it true that if f is convex in x and f has a minimizer, then f has a unique minimizer?
If not, provide a counter example.

[5 marks]

b) Is it true that if f is µ-strongly convex in x and f has a minimizer, then f has a unique
minimizer? If not, provide a counter example. (Hint: To show that the minimizer is
unique, assume there are two, say x∗1 and x∗2, and show that x∗1 = x∗2.)

[5 marks]

1https://www.gradescope.com/courses/454792/assignments/2375358
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c) Suppose we are trying to find the minimum of f(x) = x2 with gradient descent. What
is the gradient at x = 1? Suppose xt−1 = 1. Based on the gradient update

xt = xt−1 − ηt
∂f

∂x
(xt−1), (2)

could we get a worse value after a gradient update? In other words, could f(xt) ≥
f(xt−1)? Based on this result, do gradient updates always reduce the objective?

[5 marks]

d) Show that

max(a+ b, c+ d) ≤ max(a, c) + max(b, d), (3)

for any a, b, c, d ∈ R. Now, use this fact to show that h(x) = max(f(x), g(x)) is convex
in x if f and g are both convex.

[5 marks]

3. In this question, we consider the following loss function for binary classification, where x ∈ Rd

and y ∈ {+1,−1}.

ℓnew(w;x, y) =

{
(yw⊤ϕ(x)− 1)2 if yw⊤ϕ(x) ≤ 1

0 otherwise
(4)

a) Show that f(s) = s2 is convex in s.

[3 marks]

b) With the fact above, show that ℓnew(w;x, y) is convex in w.

[3 marks]

c) Is ℓnew(w;x, y) a Lipschitz continuous function? Why or why not?

[3 marks]

d) Derive the gradient of ℓnew(w;x, y) with respect to w.

[3 marks]

e) Show that ℓnew(w;x, y) is an upper bound on the zero-one loss

ℓ01(w;x, y) = 1yw⊤ϕ(x)<0, (5)

for all w, x, and y.

[8 marks]

4. Suppose we want to add a few new operations to a neural network library. The neural network
library is implemented as a computation graph, and our goal is to implement the backward
operations.

a) To allow us to train a regression model, we need to implement the squared loss

ℓ(y, ŷ) = (y − ŷ)2, (6)

where y is the ground truth and ŷ is the prediction. Derive ∂ℓ
∂ŷ .

[3 marks]

2



b) Instead of logistic function as the activation function, we could use rectified linear units

ReLU(z) = max(0, z) (7)

i) We just showed that h(x) = max(f(x), g(x)) is convex in x if f and g are convex in
x. Use this fact to show that ReLU is convex in z.

[3 marks]

ii) Is ReLU a differentiable function? If so, derive the derivative of ReLU. If not, find
the point that is not differentiable and a subgradient at that point.

[6 marks]

iii) Show that ReLU is 1-Lipschitz continuous.
[3 marks]

5. There are two common approaches in machine learning that are often compared to each other.
One is the generative approach, where the distribution of the data points are modeled and
hence assumed. The other is the discriminative approach, where we do not model the
distrubition of data points but only care about achieving a goal, for example, separating data
points into two classes.

In this question, we will use an example to illustrate the differences of the two. We are given
a 2-dimensional data set.2 The following piece of code

import pickle

f = open('two-L.pkl', 'rb')

pos, neg = pickle.load(f)

f.close()

shows how you load the data set. The variable pos is a list of points from the positive class
(+1), while neg is a list of points from the other (−1). The points look like the following in
the space.

a) To demonstrate the decision boundary learned from a discriminative approach, write a
program to train a linear classifier with log loss to separate the two classes. Show a plot
of the line (the classifier) after training together with the points.

2Download the data set here https://homepages.inf.ed.ac.uk/htang2/mlg2022/two-L.pkl.
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[15 marks]

b) To demonstrate the decision boundary learned from a generaive approach, we assume
points from the positive class is drawn from a Gaussian N (µ1,Σ1), and points from the
negative class is drawn from another Gaussian N (µ2,Σ2).

i) Write a program to compute

µ =
1

n

n∑
i=1

xi (8)

Σ =
1

n

n∑
i=1

(xi − µ)(xi − µ)⊤ (9)

and estimate µ1, Σ1, µ2, and Σ2.

ii) Find the line that passes through µ1+µ2

2 while perpendicular to the vector µ2 − µ1.
Show a plot of the line (the classifier) together with the two means and the points.

[12 marks]

c) Discuss the pros and cons of both approaches based on the observation.

[3 marks]

4


	Submission
	Questions

