1 Submission

• Submit your coursework on gradescope[1]
• Due: 7 Nov, 2022 at noon, 12:00pm

2 Questions

1. Answer the following questions about information theory.

 a) Variance is defined as \(\text{Var}[x] = \mathbb{E}[(x - \mathbb{E}[x])^2] \). Show that \(\text{Var}[x] = \mathbb{E}[x^2] - (\mathbb{E}[x])^2 \). \([6 \text{ marks}]\)

 b) Entropy of a random variable \(x \) is defined as \(\mathbb{E}[-\log p(x)] \). Show that if \(x \) is Gaussian, i.e., \(x \sim \mathcal{N}(\mu, \sigma^2) \), its entropy is

\[
\mathbb{E}[-\log p(x)] = \frac{1}{2} \log(2\pi\sigma^2) + \frac{1}{2}.
\]

 (Hint: The derivation is a lot simpler if you use the linearity of expectation and the above fact. In particular, \(\sigma^2 = \mathbb{E}[x^2] - \mu^2 \).) \([6 \text{ marks}]\)

 c) Based on the above, can entropy be negative? \([3 \text{ marks}]\)

2. Answer the following questions about optimization.

 a) Is it true that if \(f \) is convex in \(x \) and \(f \) has a minimizer, then \(f \) has a unique minimizer? If not, provide a counter example. \([5 \text{ marks}]\)

 b) Is it true that if \(f \) is \(\mu \)-strongly convex in \(x \) and \(f \) has a minimizer, then \(f \) has a unique minimizer? If not, provide a counter example. (Hint: To show that the minimizer is unique, assume there are two, say \(x_1^* \) and \(x_2^* \), and show that \(x_1^* = x_2^* \).) \([5 \text{ marks}]\)

c) Suppose we are trying to find the minimum of $f(x) = x^2$ with gradient descent. What is the gradient at $x = 1$? Suppose $x_{t-1} = 1$. Based on the gradient update
\[x_t = x_{t-1} - \eta_t \frac{\partial f}{\partial x}(x_{t-1}), \]
(2)
could we get a worse value after a gradient update? In other words, could $f(x_t) \geq f(x_{t-1})$? Based on this result, do gradient updates always reduce the objective? [5 marks]

d) Show that
\[\max(a + b, c + d) \leq \max(a, c) + \max(b, d), \]
(3)
for any $a, b, c, d \in \mathbb{R}$. Now, use this fact to show that $h(x) = \max(f(x), g(x))$ is convex in x if f and g are both convex. [5 marks]

3. In this question, we consider the following loss function for binary classification, where $x \in \mathbb{R}^d$ and $y \in \{+1, -1\}$.
\[\ell_{\text{new}}(w; x, y) = \begin{cases} (yw^\top \phi(x) - 1)^2 & \text{if } yw^\top \phi(x) \leq 1 \\ 0 & \text{otherwise} \end{cases} \]
(4)
a) Show that $f(s) = s^2$ is convex in s. [3 marks]
b) With the fact above, show that $\ell_{\text{new}}(w; x, y)$ is convex in w. [3 marks]
c) Is $\ell_{\text{new}}(w; x, y)$ a Lipschitz continuous function? Why or why not? [3 marks]
d) Derive the gradient of $\ell_{\text{new}}(w; x, y)$ with respect to w. [3 marks]
e) Show that $\ell_{\text{new}}(w; x, y)$ is an upper bound on the zero-one loss
\[\ell_{01}(w; x, y) = 1_{yw^\top \phi(x) < 0}, \]
for all $w, x, \text{and } y$. [8 marks]

4. Suppose we want to add a few new operations to a neural network library. The neural network library is implemented as a computation graph, and our goal is to implement the backward operations.

a) To allow us to train a regression model, we need to implement the squared loss
\[\ell(y, \hat{y}) = (y - \hat{y})^2, \]
(6)
where y is the ground truth and \hat{y} is the prediction. Derive $\frac{\partial \ell}{\partial \hat{y}}$. [3 marks]
b) Instead of logistic function as the activation function, we could use rectified linear units
\[\text{ReLU}(z) = \max(0, z) \quad (7) \]

i) We just showed that \(h(x) = \max(f(x), g(x)) \) is convex in \(x \) if \(f \) and \(g \) are convex in \(x \). Use this fact to show that ReLU is convex in \(z \). \[3 \text{ marks} \]

ii) Is ReLU a differentiable function? If so, derive the derivative of ReLU. If not, find the point that is not differentiable and a subgradient at that point. \[6 \text{ marks} \]

iii) Show that ReLU is 1-Lipschitz continuous. \[3 \text{ marks} \]

5. There are two common approaches in machine learning that are often compared to each other. One is the **generative approach**, where the distribution of the data points are modeled and hence assumed. The other is the **discriminative approach**, where we do not model the distribution of data points but only care about achieving a goal, for example, separating data points into two classes.

In this question, we will use an example to illustrate the differences of the two. We are given a 2-dimensional data set.\(^2\) The following piece of code

```python
import pickle

f = open('two-L.pkl', 'rb')
pos, neg = pickle.load(f)
f.close()
```

shows how you load the data set. The variable `pos` is a list of points from the positive class (+1), while `neg` is a list of points from the other (−1). The points look like the following in the space.

![Data points](https://homepages.inf.ed.ac.uk/htang2/mlg2022/two-L.pkl)

a) To demonstrate the decision boundary learned from a discriminative approach, write a program to train a linear classifier with log loss to separate the two classes. Show a plot of the line (the classifier) after training together with the points.

\(^2\)Download the data set here https://homepages.inf.ed.ac.uk/htang2/mlg2022/two-L.pkl
b) To demonstrate the decision boundary learned from a generative approach, we assume points from the positive class is drawn from a Gaussian $\mathcal{N}(\mu_1, \Sigma_1)$, and points from the negative class is drawn from another Gaussian $\mathcal{N}(\mu_2, \Sigma_2)$.

i) Write a program to compute

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

and estimate μ_1, Σ_1, μ_2, and Σ_2.

ii) Find the line that passes through $\frac{\mu_1 + \mu_2}{2}$ while perpendicular to the vector $\mu_2 - \mu_1$.

Show a plot of the line (the classifier) together with the two means and the points.

[12 marks]

c) Discuss the pros and cons of both approaches based on the observation.

[3 marks]