Machine Learning Lecture 2: Probability

Hao Tang

December 2, 2022

What is a probability measure \mathbb{P} ?

Probability measures

- Start with a set Ω .
- A subset $X \subseteq \Omega$ is called an event.
- A probability measure $\mathbb P$ takes a subset and returns a real value.

Probability measures

- 1. $\mathbb{P}: 2^{\Omega} \to \mathbb{R}$
 - 2^{Ω} is the power set, i.e., all subsets of Ω .
 - $\mathbb P$ is a function that takes a subset of Ω and returns a real value.
- 2. $0 \leq \mathbb{P}(X) \leq 1$ for any $X \subseteq \Omega$
- 3. $\mathbb{P}(\Omega) = 1$
- 4. $\mathbb{P}(X \cup Y) = \mathbb{P}(X) + \mathbb{P}(Y)$ if $X \cap Y = \emptyset$

What happens when Ω is discrete and finite?

Discrete probability distributions

- When Ω is discrete and finite, it is possible to enumerate all elements of a subset $X \subseteq \Omega$.
- For any $X \subseteq \Omega$, we can implement a probability measure \mathbb{P} with another function p by letting

$$\mathbb{P}(X) = \sum_{\omega \in X} p(\omega) \tag{1}$$

• The function *p* is called a probability mass function or discrete probability distribution

1.
$$p: \Omega \to \mathbb{R}$$

- 2. $0 \le p(\omega) \le 1$ for any $\omega \in \Omega$
- 3. $\sum_{\omega \in \Omega} p(\omega) = 1$

Discrete probability distributions

- $\Omega = \{1, 2, 3, 4, 5, 6\}$
- $\mathbb{P}: 2^{\Omega} \to \mathbb{R}$
 - The input to the distribution can be any subset of Ω .
 - It's valid (type-correct) to write $\mathbb{P}(\{1\})$ and $\mathbb{P}(\{1,2\})$.
- $\mathbb{P}(\Omega) = \mathbb{P}(\{1, 2, 3, 4, 5, 6\}) = 1$
- $\mathbb{P}(\{1,2\}) = p(1) + p(2) = 2/6$
- $\{1\}$ is an event, but 1 is not.
- \mathbb{P} and p are different!

face	probability
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

Set comprehension

• Set comprehension is a shorthand for describing sets with constraints.

$$\mathbb{P}(\omega = 3) = \mathbb{P}(\{\omega : \omega = 3\})$$

 $\mathbb{P}(\omega > 3) = \mathbb{P}(\{\omega : \omega > 3\})$

 $\mathbb{P}(\omega \text{ is even}) = \mathbb{P}(\{\omega : \omega \in \{2, 4, 6\}\})$

• The variable name does not matter.

 $\mathbb{P}(\{\omega:\omega>3\})=\mathbb{P}(\{x:x>3\})$

• Always ask what is random.

 $\mathbb{P}(\omega > t/\sqrt{2} + 3) = \mathbb{P}(t < \sqrt{2}(\omega - 3)) = \mathbb{P}(\{\omega : t < \sqrt{2}(\omega - 3)\})$

Continuous probability distribution

The function F is a cumulative distribution function if

1. $F : \mathbb{R} \rightarrow [0, 1]$

2. F is monotonic, i.e., F(x) < F(y) if x < y

3. $\lim_{x\to\infty} F(x) = 1$ and $\lim_{x\to-\infty} F(x) = 0$

Continuous probability distribution

- A probability density function p is defined as $p(u) = \frac{dF}{dx}(u)$ or $F(x) = \int_{-\infty}^{x} p(u) du.$
- We can construct a probability measure $\mathbb P$ by letting

$$\mathbb{P}(a < X < b) = \int_{a}^{b} p(u) du = F(b) - F(a).$$
⁽²⁾

• $\Omega = \mathbb{R}$ and $\mathbb{P} : 2^{\mathbb{R}} \to \mathbb{R}$ takes a subset of \mathbb{R} as input.

Gaussian distribution

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$
(3)

Sampling notation

We say that a is drawn from a Gaussian if

$$a \sim \mathcal{N}(\mu, \sigma^2).$$
 (4)

It simply means

$$p(a) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(a-\mu)^2\right).$$
(5)

Expectation

• Definition

$$\mathbb{E}[x] = \int_{-\infty}^{\infty} x p(x) dx \qquad \qquad \mathbb{E}[x] = \sum_{x \in \Omega} x p(x) \qquad (6)$$

- $\mathbb{E}[x]$ is **not** a function of x, but a function of p.
- A better notation would be

$$\mathbb{E}_{x \sim p(x)}[x]. \tag{7}$$

The law of unconcious statistician (LOTUS)

• Theorem

$$\mathbb{E}_{x \sim p(x)}[f(x)] = \int_{-\infty}^{\infty} f(x)p(x)dx \qquad \mathbb{E}_{x \sim p(x)}[f(x)] = \sum_{x \in \Omega} f(x)p(x) \quad (8)$$

- The theorem needs to be formally proved.
- The f(x) in $\mathbb{E}[f(x)]$ is **not** a function of x, but an expression of x.

$$\begin{split} & \mathbb{E}_{x \sim p(x)}[x^2] \\ & \mathbb{E}_{x \sim p(x)}\left[(x - \mathbb{E}_{x \sim p(x)}[x])^2\right] = \mathsf{Var}[x] \end{split}$$

Free and bound variables

```
def p(x):
    return (1.0 / math.sqrt(2 * math.pi)
        * math.exp(-0.5 * (x - mu) * (x - mu))
mu = 0.2
p(0.5)
x = 0.3
p(x = x)
```

- Is x a free variable or a bound variable? When is it bound and what is it bound to?
- Is mu a free variable or a bound variable?

Notation hell

- When we write p(x), p is **not** the name of the function, as opposed to when we write f(x).
- When we have multiple distributions, the convention is to use variable names to distinguish distributions, e.g., p(x), p(y), and p(z).
- It gets confusing when we simply write p(a), and the convention is to use keyword arguments, e.g., p(x = a), p(y = a), and p(z = a).
- Note that p(x = a) does not mean p({x : x = a}). Remember that p takes a point in Ω, not a subset of Ω.
- Sometimes people also write $p_x(a)$ to mean p(x = a).

Multiple random variables

• Joint distribution p(x, y)

• Marginal distribution
$$p(x) = \int_{-\infty}^{\infty} p(x, y) dy$$
 or $p(x) = \sum_{y \in \Omega_Y} p(x, y)$

- Conditional distribution $p(x|y) = \frac{p(x, y)}{p(y)}$
- Note that these are all defined based on p not \mathbb{P} .

Notations again

$$p(x) = \sum_{y \in \Omega_y} p(x, y) \qquad \qquad p_x(a) = \sum_{b \in \Omega_y} p_{x,y}(a, b) \qquad (9)$$

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

$$p_{y|x}(b,a) = rac{p_{x|y}(a,b)p_y(b)}{p_x(a)}$$
 (10)

Bayes rule

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$
(11)

$$p(y|x) = \frac{p(x,y)}{p(x)} = \frac{p(x|y)p(y)}{p(x)} = \frac{p(x|y)p(y)}{\sum_{y' \in \Omega_y} p(x|y')p(y')}$$
(12)

Independence

• We say that x and y are independent if

$$p(x, y) = p(x)p(y)$$
(13)

for any $x \in \Omega_x$ and $y \in \Omega_y$.

• By the definition of conditional probability,

$$p(y|x) = \frac{p(x,y)}{p(x)} = \frac{p(x)p(y)}{p(x)} = p(y).$$
(14)

• In other words, x and y are independent, if given x or not does not change the probability of y.

Independence and expectation

- $\mathbb{E}[cx] = c\mathbb{E}[x]$
- $\mathbb{E}[x + y] = \mathbb{E}[x] + \mathbb{E}[y]$ if x and y are independent.

 $\mathbb{E}_{x,y \sim \rho(x,y)}[x+y] = \mathbb{E}_{x \sim \rho(x)}[\mathbb{E}_{y \sim \rho(y)}[x+y]] = \mathbb{E}_{x \sim \rho(x)}[x] + \mathbb{E}_{y \sim \rho(y)}[y]$

• $\mathbb{E}[xy] = \mathbb{E}[x]\mathbb{E}[y]$ if x and y are independent.

Random variables

- We define events (as subsets) and probability measures (a function that maps subsets to real values).
- A probability distribution is a function that maps individual points to real values.
- For the purpose of this course, a variable is a random variable if it is associated with a probability measure.
- There is a mathematical definition, but we will not attempt to do it here.

Random variables

- If $a \sim U(0, 1)$, then a is random.
- If $a \sim \mathcal{N}(0, 1)$, then a is random.
- If $\epsilon \sim \mathcal{N}(0,1)$, then $m + \epsilon$ is random for some real value m.
- In fact, $m + \epsilon \sim \mathcal{N}(m, 1)$.

Random variables

• If $x \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $y \sim \mathcal{N}(\mu_2, \sigma_2^2)$,

$$x + y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$
 (15)

• If $u_1 \sim U(0,1)$ and $u_2 \sim U(0,1)$, then

$$z_1 = \sqrt{-2\log u_1}\cos(2\pi u_2) \sim \mathcal{N}(0,1)$$
(16)
$$z_1 = \sqrt{-2\log u_1}\sin(2\pi u_2) \sim \mathcal{N}(0,1)$$
(17)

• In general, it is hard to determine the probability distribution solely based on the algebra of random variables.

Moment-generating functions

•
$$M_x(t) = \mathbb{E}[e^{tx}] = \int_{-\infty}^{\infty} e^{tx} p(x) dx$$

$$M_{x}(t) = \mathbb{E}[e^{tx}] = \mathbb{E}\left[1 + \frac{t}{1!}x + \frac{t^{2}}{2!}x^{2} + \cdots\right]$$
(18)
= $1 + \frac{t}{1!}\mathbb{E}[x] + \frac{t^{2}}{2!}\mathbb{E}[x^{2}] + \cdots$ (19)

- $M'_{x}(0) = \mathbb{E}[x], \ M''_{x}(0) = \mathbb{E}[x^{2}], \ \dots$
- If $M_x(t) = M_y(t)$, then x and y has the same probability distribution

MGF of a Gaussian

Suppose $x \sim \mathcal{N}(\mu, \sigma^2)$.

MGF of a Gaussian

Suppose $x \sim \mathcal{N}(\mu, \sigma^2)$.

$$\mathbb{E}[e^{tx}] = \int e^{tx} \frac{-1}{\sqrt{2\pi\sigma^2}} e^{\frac{1}{2\sigma^2}(x-\mu)^2} dx$$
(20)

$$=\frac{1}{\sqrt{2\pi\sigma^2}}\int e^{\frac{-1}{2\sigma^2}(x^2-2\mu x+\mu^2-2t\sigma^2 x))}dx$$
(21)

$$=e^{\frac{1}{2\sigma^2}((\mu+t\sigma^2)^2-\mu^2)}\frac{1}{\sqrt{2\pi\sigma^2}}\int e^{\frac{-1}{2\sigma^2}(x-(\mu+t\sigma^2))^2}dx$$
(22)

$$=e^{\mu t + t^2 \sigma^2/2}$$
(23)

Linear combination of Gaussians

Suppose $x_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $x_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$.

We have $a_1x_1 + a_2x_2 \sim \mathcal{N}(a_1\mu_1 + a_2\mu_2, a_1^2\sigma_1^2 + a_2^2\sigma_2^2).$

Linear combination of Gaussians

Suppose $x_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $x_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$.

$$\mathbb{E}[e^{t(a_1x_1+a_2x_2)}] = \mathbb{E}[e^{ta_1x_1}]\mathbb{E}[e^{ta_2x_2}]$$
(24)
$$= e^{ta_1\mu_1+t^2a_1^2\sigma_1^2/2}e^{ta_2\mu_2+t^2a_2^2\sigma_2^2/2}$$
(25)
$$= e^{t(a_1\mu_1+a_2\mu_2)+t^2(a_1^2\sigma_1^2+a_2^2\sigma_2^2)/2}$$
(26)

We have $a_1x_1 + a_2x_2 \sim \mathcal{N}(a_1\mu_1 + a_2\mu_2, a_1^2\sigma_1^2 + a_2^2\sigma_2^2).$

Independence and identically distributed

• x_1, x_2, \ldots, x_n are called independent and identically distributed (i.i.d.) samples if x_1, x_2, \ldots, x_n are mutually independent and are drawn from the same distribution.

Maximum likelihood

- If we flip a coin 500 times and see 300 heads, how do we estimate the probability of getting a head?
- Asusme i.i.d. Bernoulli random variables x₁,..., x_n (with probability β to be heads).

Maximum likelihood

- If we flip a coin 500 times and see 300 heads, how do we estimate the probability of getting a head?
- Asusme i.i.d. Bernoulli random variables x₁,..., x_n (with probability β to be heads).
- The likelihood of β is

$$p(x_1, x_2, \dots, x_n) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{i=1}^n p(x_i) = \prod_{i=1}^n \beta^{x_i}(1-\beta)^{1-x_i}$$
(27)

• The maximum likelihood estimator of β is the value that maximizes the likelihood.

Maximum likelihood

$$L = \log p(x_1, \dots, x_n) = \sum_{i=1}^n [x_i \log \beta + (1 - x_i) \log(1 - \beta)]$$
(28)

$$\arg\max_{\beta} \prod_{i=1}^{n} \beta^{x_i} (1-\beta)^{1-x_i} = \arg\max_{\beta} \sum_{i=1}^{n} [x_i \log \beta + (1-x_i) \log(1-\beta)]$$
(29)

$$\frac{\partial L}{\partial \beta} = \sum_{i=1}^{n} \left[\frac{x_i}{\beta} - \frac{(1-x_i)}{1-\beta} \right] = \sum_{i=1}^{n} \left[\frac{x_i - \beta}{\beta(1-\beta)} \right] = \frac{\sum_{i=1}^{n} x_i - n\beta}{\beta(1-\beta)} = 0$$
(30)

$$\beta = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{31}$$