Machine Learning
 Lecture 2: Probability

Hao Tang

December 2, 2022

What is a probability measure \mathbb{P} ?

Probability measures

- Start with a set Ω.
- A subset $X \subseteq \Omega$ is called an event.
- A probability measure \mathbb{P} takes a subset and returns a real value.

Probability measures

1. $\mathbb{P}: 2^{\Omega} \rightarrow \mathbb{R}$

- 2^{Ω} is the power set, i.e., all subsets of Ω.
- \mathbb{P} is a function that takes a subset of Ω and returns a real value.

2. $0 \leq \mathbb{P}(X) \leq 1$ for any $X \subseteq \Omega$
3. $\mathbb{P}(\Omega)=1$
4. $\mathbb{P}(X \cup Y)=\mathbb{P}(X)+\mathbb{P}(Y)$ if $X \cap Y=\emptyset$

What happens when Ω is discrete and finite?

Discrete probability distributions

- When Ω is discrete and finite, it is possible to enumerate all elements of a subset $X \subseteq \Omega$.
- For any $X \subseteq \Omega$, we can implement a probability measure \mathbb{P} with another function p by letting

$$
\begin{equation*}
\mathbb{P}(X)=\sum_{\omega \in X} p(\omega) \tag{1}
\end{equation*}
$$

- The function p is called a probability mass function or discrete probability distribution

1. $p: \Omega \rightarrow \mathbb{R}$
2. $0 \leq p(\omega) \leq 1$ for any $\omega \in \Omega$
3. $\sum_{\omega \in \Omega} p(\omega)=1$

Discrete probability distributions

- $\Omega=\{1,2,3,4,5,6\}$
- $\mathbb{P}: 2^{\Omega} \rightarrow \mathbb{R}$
- The input to the distribution can be any subset of Ω.
- It's valid (type-correct) to write $\mathbb{P}(\{1\})$ and $\mathbb{P}(\{1,2\})$.
- $\mathbb{P}(\Omega)=\mathbb{P}(\{1,2,3,4,5,6\})=1$
- $\mathbb{P}(\{1,2\})=p(1)+p(2)=2 / 6$

face	probability
1	$1 / 6$
2	$1 / 6$
3	$1 / 6$
4	$1 / 6$
5	$1 / 6$
6	$1 / 6$

- $\{1\}$ is an event, but 1 is not.
- \mathbb{P} and p are different!

Set comprehension

- Set comprehension is a shorthand for describing sets with constraints.
$\mathbb{P}(\omega=3)=\mathbb{P}(\{\omega: \omega=3\})$
$\mathbb{P}(\omega>3)=\mathbb{P}(\{\omega: \omega>3\})$
$\mathbb{P}(\omega$ is even $)=\mathbb{P}(\{\omega: \omega \in\{2,4,6\}\})$
- The variable name does not matter.
$\mathbb{P}(\{\omega: \omega>3\})=\mathbb{P}(\{x: x>3\})$
- Always ask what is random.
$\mathbb{P}(\omega>t / \sqrt{2}+3)=\mathbb{P}(t<\sqrt{2}(\omega-3))=\mathbb{P}(\{\omega: t<\sqrt{2}(\omega-3)\})$

Continuous probability distribution

The function F is a cumulative distribution function if

1. $F: \mathbb{R} \rightarrow[0,1]$
2. F is monotonic, i.e., $F(x)<F(y)$ if $x<y$
3. $\lim _{x \rightarrow \infty} F(x)=1$ and $\lim _{x \rightarrow-\infty} F(x)=0$

Continuous probability distribution

- A probability density function p is defined as $p(u)=\frac{d F}{d x}(u)$ or

$$
F(x)=\int_{-\infty}^{x} p(u) d u
$$

- We can construct a probability measure \mathbb{P} by letting

$$
\begin{equation*}
\mathbb{P}(a<X<b)=\int_{a}^{b} p(u) d u=F(b)-F(a) \tag{2}
\end{equation*}
$$

- $\Omega=\mathbb{R}$ and $\mathbb{P}: 2^{\mathbb{R}} \rightarrow \mathbb{R}$ takes a subset of \mathbb{R} as input.

Gaussian distribution

$$
\begin{equation*}
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) \tag{3}
\end{equation*}
$$

CDF

PDF

Sampling notation

We say that a is drawn from a Gaussian if

$$
\begin{equation*}
a \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \tag{4}
\end{equation*}
$$

It simply means

$$
\begin{equation*}
p(a)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(a-\mu)^{2}\right) . \tag{5}
\end{equation*}
$$

Expectation

- Definition

$$
\begin{equation*}
\mathbb{E}[x]=\int_{-\infty}^{\infty} x p(x) d x \quad \mathbb{E}[x]=\sum_{x \in \Omega} x p(x) \tag{6}
\end{equation*}
$$

- $\mathbb{E}[x]$ is not a function of x, but a function of p.
- A better notation would be

$$
\begin{equation*}
\mathbb{E}_{x \sim p(x)}[x] \tag{7}
\end{equation*}
$$

The law of unconcious statistician (LOTUS)

- Theorem

$$
\begin{equation*}
\mathbb{E}_{x \sim p(x)}[f(x)]=\int_{-\infty}^{\infty} f(x) p(x) d x \quad \mathbb{E}_{x \sim p(x)}[f(x)]=\sum_{x \in \Omega} f(x) p(x) \tag{8}
\end{equation*}
$$

- The theorem needs to be formally proved.
- The $f(x)$ in $\mathbb{E}[f(x)]$ is not a function of x, but an expression of x.

$$
\mathbb{E}_{x \sim p(x)}\left[x^{2}\right]
$$

$$
\mathbb{E}_{x \sim p(x)}\left[\left(x-\mathbb{E}_{x \sim p(x)}[x]\right)^{2}\right]=\operatorname{Var}[x]
$$

Free and bound variables

```
def p(x):
    return (1.0 / math.sqrt(2 * math.pi)
        * math.exp(-0.5 * (x - mu) * (x - mu))
mu = 0.2
p(0.5)
x = 0.3
p(x = x)
```

- Is x a free variable or a bound variable? When is it bound and what is it bound to?
- Is mu a free variable or a bound variable?

Notation hell

- When we write $p(x), p$ is not the name of the function, as opposed to when we write $f(x)$.
- When we have multiple distributions, the convention is to use variable names to distinguish distributions, e.g., $p(x), p(y)$, and $p(z)$.
- It gets confusing when we simply write $p(a)$, and the convention is to use keyword arguments, e.g., $p(x=a), p(y=a)$, and $p(z=a)$.
- Note that $p(x=a)$ does not mean $p(\{x: x=a\})$. Remember that p takes a point in Ω, not a subset of Ω.
- Sometimes people also write $p_{x}(a)$ to mean $p(x=a)$.

Multiple random variables

- Joint distribution $p(x, y)$
- Marginal distribution $p(x)=\int_{-\infty}^{\infty} p(x, y) d y$ or $p(x)=\sum_{y \in \Omega_{Y}} p(x, y)$
- Conditional distribution $p(x \mid y)=\frac{p(x, y)}{p(y)}$
- Note that these are all defined based on p not \mathbb{P}.

Notations again

$$
\begin{align*}
p(x) & =\sum_{y \in \Omega_{y}} p(x, y) & p_{x}(a) & =\sum_{b \in \Omega_{y}} p_{x, y}(a, b) \tag{9}\\
p(y \mid x) & =\frac{p(x \mid y) p(y)}{p(x)} & p_{y \mid x}(b, a) & =\frac{p_{x \mid y}(a, b) p_{y}(b)}{p_{x}(a)} \tag{10}
\end{align*}
$$

Bayes rule

$$
\begin{gather*}
p(y \mid x)=\frac{p(x \mid y) p(y)}{p(x)} \tag{11}\\
p(y \mid x)=\frac{p(x, y)}{p(x)}=\frac{p(x \mid y) p(y)}{p(x)}=\frac{p(x \mid y) p(y)}{\sum_{y^{\prime} \in \Omega_{y}} p\left(x \mid y^{\prime}\right) p\left(y^{\prime}\right)} \tag{12}
\end{gather*}
$$

Independence

- We say that x and y are independent if

$$
\begin{equation*}
p(x, y)=p(x) p(y) \tag{13}
\end{equation*}
$$

for any $x \in \Omega_{x}$ and $y \in \Omega_{y}$.

- By the definition of conditional probability,

$$
\begin{equation*}
p(y \mid x)=\frac{p(x, y)}{p(x)}=\frac{p(x) p(y)}{p(x)}=p(y) \tag{14}
\end{equation*}
$$

- In other words, x and y are independent, if given x or not does not change the probability of y.

Independence and expectation

- $\mathbb{E}[c x]=c \mathbb{E}[x]$
- $\mathbb{E}[x+y]=\mathbb{E}[x]+\mathbb{E}[y]$ if x and y are independent.
$\mathbb{E}_{x, y \sim p(x, y)}[x+y]=\mathbb{E}_{x \sim p(x)}\left[\mathbb{E}_{y \sim p(y)}[x+y]\right]=\mathbb{E}_{x \sim p(x)}[x]+\mathbb{E}_{y \sim p(y)}[y]$
- $\mathbb{E}[x y]=\mathbb{E}[x] \mathbb{E}[y]$ if x and y are independent.

Random variables

- We define events (as subsets) and probability measures (a function that maps subsets to real values).
- A probability distribution is a function that maps individual points to real values.
- For the purpose of this course, a variable is a random variable if it is associated with a probability measure.
- There is a mathematical definition, but we will not attempt to do it here.

Random variables

- If $a \sim U(0,1)$, then a is random.
- If $a \sim \mathcal{N}(0,1)$, then a is random.
- If $\epsilon \sim \mathcal{N}(0,1)$, then $m+\epsilon$ is random for some real value m.
- In fact, $m+\epsilon \sim \mathcal{N}(m, 1)$.

Random variables

- If $x \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $y \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$,

$$
\begin{equation*}
x+y \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right) \tag{15}
\end{equation*}
$$

- If $u_{1} \sim U(0,1)$ and $u_{2} \sim U(0,1)$, then

$$
\begin{align*}
& z_{1}=\sqrt{-2 \log u_{1}} \cos \left(2 \pi u_{2}\right) \sim \mathcal{N}(0,1) \tag{16}\\
& z_{1}=\sqrt{-2 \log u_{1}} \sin \left(2 \pi u_{2}\right) \sim \mathcal{N}(0,1) \tag{17}
\end{align*}
$$

- In general, it is hard to determine the probability distribution solely based on the algebra of random variables.

Moment-generating functions

- $M_{x}(t)=\mathbb{E}\left[e^{t x}\right]=\int_{-\infty}^{\infty} e^{t x} p(x) d x$

$$
\begin{align*}
M_{x}(t)=\mathbb{E}\left[e^{t x}\right] & =\mathbb{E}\left[1+\frac{t}{1!} x+\frac{t^{2}}{2!} x^{2}+\cdots\right] \tag{18}\\
& =1+\frac{t}{1!} \mathbb{E}[x]+\frac{t^{2}}{2!} \mathbb{E}\left[x^{2}\right]+\cdots \tag{19}
\end{align*}
$$

- $M_{x}^{\prime}(0)=\mathbb{E}[x], M_{x}^{\prime \prime}(0)=\mathbb{E}\left[x^{2}\right], \ldots$
- If $M_{x}(t)=M_{y}(t)$, then x and y has the same probability distribution

MGF of a Gaussian

Suppose $x \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

MGF of a Gaussian

Suppose $x \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

$$
\begin{align*}
\mathbb{E}\left[e^{t x}\right] & =\int e^{t x} \frac{-1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{1}{2 \sigma^{2}}(x-\mu)^{2}} d x \tag{20}\\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int e^{\left.\frac{-1}{2 \sigma^{2}}\left(x^{2}-2 \mu x+\mu^{2}-2 t \sigma^{2} x\right)\right)} d x \tag{21}\\
& =e^{\frac{1}{2 \sigma^{2}}\left(\left(\mu+t \sigma^{2}\right)^{2}-\mu^{2}\right)} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \int e^{\frac{-1}{2 \sigma^{2}}\left(x-\left(\mu+t \sigma^{2}\right)\right)^{2}} d x \tag{22}\\
& =e^{\mu t+t^{2} \sigma^{2} / 2} \tag{23}
\end{align*}
$$

Linear combination of Gaussians

Suppose $x_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $x_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$.

We have $a_{1} x_{1}+a_{2} x_{2} \sim \mathcal{N}\left(a_{1} \mu_{1}+a_{2} \mu_{2}, a_{1}^{2} \sigma_{1}^{2}+a_{2}^{2} \sigma_{2}^{2}\right)$.

Linear combination of Gaussians

Suppose $x_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $x_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$.

$$
\begin{align*}
\mathbb{E}\left[e^{t\left(a_{1} x_{1}+a_{2} x_{2}\right)}\right] & =\mathbb{E}\left[e^{t a_{1} x_{1}}\right] \mathbb{E}\left[e^{t a_{2} x_{2}}\right] \tag{24}\\
& =e^{t a_{1} \mu_{1}+t^{2} a_{1}^{2} \sigma_{1}^{2} / 2} e^{t a_{2} \mu_{2}+t^{2} a_{2}^{2} \sigma_{2}^{2} / 2} \tag{25}\\
& =e^{t\left(a_{1} \mu_{1}+a_{2} \mu_{2}\right)+t^{2}\left(a_{1}^{2} \sigma_{1}^{2}+a_{2}^{2} \sigma_{2}^{2}\right) / 2} \tag{26}
\end{align*}
$$

We have $a_{1} x_{1}+a_{2} x_{2} \sim \mathcal{N}\left(a_{1} \mu_{1}+a_{2} \mu_{2}, a_{1}^{2} \sigma_{1}^{2}+a_{2}^{2} \sigma_{2}^{2}\right)$.

Independence and identically distributed

- $x_{1}, x_{2}, \ldots, x_{n}$ are called independent and identically distributed (i.i.d.) samples if $x_{1}, x_{2}, \ldots, x_{n}$ are mutually independent and are drawn from the same distribution.

Maximum likelihood

- If we flip a coin 500 times and see 300 heads, how do we estimate the probability of getting a head?
- Asusme i.i.d. Bernoulli random variables x_{1}, \ldots, x_{n} (with probability β to be heads).

Maximum likelihood

- If we flip a coin 500 times and see 300 heads, how do we estimate the probability of getting a head?
- Asusme i.i.d. Bernoulli random variables x_{1}, \ldots, x_{n} (with probability β to be heads).
- The likelihood of β is

$$
\begin{equation*}
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=p\left(x_{1}\right) p\left(x_{2}\right) \cdots p\left(x_{n}\right)=\prod_{i=1}^{n} p\left(x_{i}\right)=\prod_{i=1}^{n} \beta^{x_{i}}(1-\beta)^{1-x_{i}} \tag{27}
\end{equation*}
$$

- The maximum likelihood estimator of β is the value that maximizes the likelihood.

Maximum likelihood

$$
\begin{gather*}
L=\log p\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n}\left[x_{i} \log \beta+\left(1-x_{i}\right) \log (1-\beta)\right] \tag{28}\\
\underset{\beta}{\operatorname{argmax}} \prod_{i=1}^{n} \beta^{x_{i}}(1-\beta)^{1-x_{i}}=\underset{\beta}{\operatorname{argmax}} \sum_{i=1}^{n}\left[x_{i} \log \beta+\left(1-x_{i}\right) \log (1-\beta)\right] \tag{29}\\
\frac{\partial L}{\partial \beta}=\sum_{i=1}^{n}\left[\frac{x_{i}}{\beta}-\frac{\left(1-x_{i}\right)}{1-\beta}\right]=\sum_{i=1}^{n}\left[\frac{x_{i}-\beta}{\beta(1-\beta)}\right]=\frac{\sum_{i=1}^{n} x_{i}-n \beta}{\beta(1-\beta)}=0 \tag{30}\\
\beta=\frac{1}{n} \sum_{i=1}^{n} x_{i} \tag{31}
\end{gather*}
$$

