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What is a probability measure P?
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Probability measures

• Start with a set Ω.

• A subset X ⊆ Ω is called an event.

• A probability measure P takes a subset and returns a real value.
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Probability measures

1. P : 2Ω → R
– 2Ω is the power set, i.e., all subsets of Ω.
– P is a function that takes a subset of Ω and returns a real value.

2. 0 ≤ P(X ) ≤ 1 for any X ⊆ Ω

3. P(Ω) = 1

4. P(X ∪ Y ) = P(X ) + P(Y ) if X ∩ Y = ∅

4 / 30



What happens when Ω is discrete and finite?
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Discrete probability distributions

• When Ω is discrete and finite, it is possible to enumerate all elements of a subset
X ⊆ Ω.

• For any X ⊆ Ω, we can implement a probability measure P with another function
p by letting

P(X ) =
∑
ω∈X

p(ω) (1)

• The function p is called a probability mass function or discrete probability
distribution

1. p : Ω → R
2. 0 ≤ p(ω) ≤ 1 for any ω ∈ Ω
3.

∑
ω∈Ω p(ω) = 1
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Discrete probability distributions

• Ω = {1, 2, 3, 4, 5, 6}

• P : 2Ω → R
– The input to the distribution can be any

subset of Ω.
– It’s valid (type-correct) to write P({1})

and P({1, 2}).

• P(Ω) = P({1, 2, 3, 4, 5, 6}) = 1

• P({1, 2}) = p(1) + p(2) = 2/6

• {1} is an event, but 1 is not.

• P and p are different!

face probability

1 1/6
2 1/6
3 1/6
4 1/6
5 1/6
6 1/6
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Set comprehension

• Set comprehension is a shorthand for describing sets with constraints.

P(ω = 3) = P({ω : ω = 3})

P(ω > 3) = P({ω : ω > 3})

P(ω is even) = P({ω : ω ∈ {2, 4, 6}})

• The variable name does not matter.

P({ω : ω > 3}) = P({x : x > 3})

• Always ask what is random.

P(ω > t/
√
2 + 3) = P(t <

√
2(ω − 3)) = P({ω : t <

√
2(ω − 3)})
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Continuous probability distribution

The function F is a cumulative distribution
function if

1. F : R → [0, 1]

2. F is monotonic, i.e., F (x) < F (y) if
x < y

3. limx→∞ F (x) = 1 and limx→−∞ F (x) = 0
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Continuous probability distribution

• A probability density function p is defined as p(u) =
dF

dx
(u) or

F (x) =

∫ x

−∞
p(u)du.

• We can construct a probability measure P by letting

P(a < X < b) =

∫ b

a
p(u)du = F (b)− F (a). (2)

• Ω = R and P : 2R → R takes a subset of R as input.
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Gaussian distribution

p(x) =
1√
2πσ2

exp

(
− 1

2σ2
(x − µ)2

)
(3)

CDF PDF
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Sampling notation

We say that a is drawn from a Gaussian if

a ∼ N (µ, σ2). (4)

It simply means

p(a) =
1√
2πσ2

exp

(
− 1

2σ2
(a− µ)2

)
. (5)
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Expectation

• Definition

E[x ] =
∫ ∞

−∞
xp(x)dx E[x ] =

∑
x∈Ω

xp(x) (6)

• E[x ] is not a function of x , but a function of p.

• A better notation would be

Ex∼p(x)[x ]. (7)
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The law of unconcious statistician (LOTUS)

• Theorem

Ex∼p(x)[f (x)] =

∫ ∞

−∞
f (x)p(x)dx Ex∼p(x)[f (x)] =

∑
x∈Ω

f (x)p(x) (8)

• The theorem needs to be formally proved.

• The f (x) in E[f (x)] is not a function of x , but an expression of x .

Ex∼p(x)[x
2]

Ex∼p(x)

[
(x − Ex∼p(x)[x ])

2
]
= Var[x ]
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Free and bound variables

de f p ( x ) :
r e t u r n ( 1 . 0 / math . s q r t (2 ∗ math . p i )

∗ math . exp (−0.5 ∗ ( x − mu) ∗ ( x − mu) )

mu = 0 .2
p ( 0 . 5 )
x = 0 .3
p ( x = x )

• Is x a free variable or a bound variable? When is it bound and what is it bound to?

• Is mu a free variable or a bound variable?
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Notation hell

• When we write p(x), p is not the name of the function, as opposed to when we
write f (x).

• When we have multiple distributions, the convention is to use variable names to
distinguish distributions, e.g., p(x), p(y), and p(z).

• It gets confusing when we simply write p(a), and the convention is to use keyword
arguments, e.g., p(x = a), p(y = a), and p(z = a).

• Note that p(x = a) does not mean p({x : x = a}). Remember that p takes a
point in Ω, not a subset of Ω.

• Sometimes people also write px(a) to mean p(x = a).
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Multiple random variables

• Joint distribution p(x , y)

• Marginal distribution p(x) =

∫ ∞

−∞
p(x , y)dy or p(x) =

∑
y∈ΩY

p(x , y)

• Conditional distribution p(x |y) = p(x , y)

p(y)

• Note that these are all defined based on p not P.

17 / 30



Notations again

p(x) =
∑
y∈Ωy

p(x , y) px(a) =
∑
b∈Ωy

px ,y (a, b) (9)

p(y |x) = p(x |y)p(y)
p(x)

py |x(b, a) =
px |y (a, b)py (b)

px(a)
(10)
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Bayes rule

p(y |x) = p(x |y)p(y)
p(x)

(11)

p(y |x) = p(x , y)

p(x)
=

p(x |y)p(y)
p(x)

=
p(x |y)p(y)∑

y ′∈Ωy
p(x |y ′)p(y ′)

(12)
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Independence

• We say that x and y are independent if

p(x , y) = p(x)p(y) (13)

for any x ∈ Ωx and y ∈ Ωy .

• By the definition of conditional probability,

p(y |x) = p(x , y)

p(x)
=

p(x)p(y)

p(x)
= p(y). (14)

• In other words, x and y are independent, if given x or not does not change the
probability of y .
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Independence and expectation

• E[cx ] = cE[x ]

• E[x + y ] = E[x ] + E[y ] if x and y are independent.

Ex ,y∼p(x ,y)[x + y ] = Ex∼p(x)[Ey∼p(y)[x + y ]] = Ex∼p(x)[x ] + Ey∼p(y)[y ]

• E[xy ] = E[x ]E[y ] if x and y are independent.
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Random variables

• We define events (as subsets) and probability measures (a function that maps
subsets to real values).

• A probability distribution is a function that maps individual points to real values.

• For the purpose of this course, a variable is a random variable if it is associated
with a probability measure.

• There is a mathematical definition, but we will not attempt to do it here.
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Random variables

• If a ∼ U(0, 1), then a is random.

• If a ∼ N (0, 1), then a is random.

• If ϵ ∼ N (0, 1), then m + ϵ is random for some real value m.

• In fact, m + ϵ ∼ N (m, 1).
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Random variables

• If x ∼ N (µ1, σ
2
1) and y ∼ N (µ2, σ

2
2),

x + y ∼ N (µ1 + µ2, σ
2
1 + σ2

2) (15)

• If u1 ∼ U(0, 1) and u2 ∼ U(0, 1), then

z1 =
√

−2 log u1 cos(2πu2) ∼ N (0, 1) (16)

z1 =
√

−2 log u1 sin(2πu2) ∼ N (0, 1) (17)

• In general, it is hard to determine the probability distribution solely based on the
algebra of random variables.
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Moment-generating functions

• Mx(t) = E[etx ] =
∫ ∞

−∞
etxp(x)dx

Mx(t) = E[etx ] = E
[
1 +

t

1!
x +

t2

2!
x2 + · · ·

]
(18)

= 1 +
t

1!
E[x ] +

t2

2!
E[x2] + · · · (19)

• M ′
x(0) = E[x ], M ′′

x (0) = E[x2], . . .

• If Mx(t) = My (t), then x and y has the same probability distribution
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MGF of a Gaussian

Suppose x ∼ N (µ, σ2).

E[etx ] =
∫

etx
−1√
2πσ2

e
1

2σ2 (x−µ)2dx (20)

=
1√
2πσ2

∫
e

−1
2σ2 (x

2−2µx+µ2−2tσ2x))dx (21)

= e
1

2σ2 ((µ+tσ2)2−µ2) 1√
2πσ2

∫
e

−1
2σ2 (x−(µ+tσ2))2dx (22)

= eµt+t2σ2/2 (23)

26 / 30



MGF of a Gaussian

Suppose x ∼ N (µ, σ2).

E[etx ] =
∫

etx
−1√
2πσ2

e
1

2σ2 (x−µ)2dx (20)

=
1√
2πσ2

∫
e

−1
2σ2 (x

2−2µx+µ2−2tσ2x))dx (21)

= e
1

2σ2 ((µ+tσ2)2−µ2) 1√
2πσ2

∫
e

−1
2σ2 (x−(µ+tσ2))2dx (22)

= eµt+t2σ2/2 (23)

26 / 30



Linear combination of Gaussians

Suppose x1 ∼ N (µ1, σ
2
1) and x2 ∼ N (µ2, σ

2
2).

E[et(a1x1+a2x2)] = E[eta1x1 ]E[eta2x2 ] (24)

= eta1µ1+t2a21σ
2
1/2eta2µ2+t2a22σ

2
2/2 (25)

= et(a1µ1+a2µ2)+t2(a21σ
2
1+a22σ

2
2)/2 (26)

We have a1x1 + a2x2 ∼ N (a1µ1 + a2µ2, a
2
1σ

2
1 + a22σ

2
2).
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Independence and identically distributed

• x1, x2, . . . , xn are called independent and identically distributed (i.i.d.) samples if
x1, x2, . . . , xn are mutually independent and are drawn from the same distribution.
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Maximum likelihood

• If we flip a coin 500 times and see 300 heads, how do we estimate the probability
of getting a head?

• Asusme i.i.d. Bernoulli random variables x1, . . . , xn (with probability β to be
heads).

• The likelihood of β is

p(x1, x2, . . . , xn) = p(x1)p(x2) · · · p(xn) =
n∏

i=1

p(xi ) =
n∏

i=1

βxi (1− β)1−xi (27)

• The maximum likelihood estimator of β is the value that maximizes the likelihood.
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Maximum likelihood

L = log p(x1, . . . , xn) =
n∑

i=1

[xi log β + (1− xi ) log(1− β)] (28)

argmax
β

n∏
i=1

βxi (1− β)1−xi = argmax
β

n∑
i=1

[xi log β + (1− xi ) log(1− β)] (29)

∂L

∂β
=

n∑
i=1

[
xi
β

− (1− xi )

1− β

]
=

n∑
i=1

[
xi − β

β(1− β)

]
=

∑n
i=1 xi − nβ

β(1− β)
= 0 (30)

β =
1

n

n∑
i=1

xi (31)
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