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What is a probability measure P?
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Probability measures

e Start with a set Q.
® A subset X C Q is called an event.

® A probability measure [P takes a subset and returns a real value.
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Probability measures

1. P:22 3R
— 2% s the power set, i.e., all subsets of Q.
— P is a function that takes a subset of Q and returns a real value.

2.0<P(X)<1forany X CQ
3. P(Q) =1

4 P(XUY)=PX)+P(Y)ifXNY =0
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What happens when €2 is discrete and finite?
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Discrete probability distributions

® When Q2 is discrete and finite, it is possible to enumerate all elements of a subset
X CQ.

® For any X C Q, we can implement a probability measure P with another function
p by letting

P(X) =) pw) (1)
weX

® The function p is called a probability mass function or discrete probability
distribution

1. p: Q=R
2. 0< p(w) <1foranywe
3. Yeap(w) =1
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Discrete probability distributions

Q=1{1,2,3,4,5,6}

P:22 4R

— The input to the distribution can be any

subset of €.
— It's valid (type-correct) to write P({1})
and P({1,2}).
P(Q) = P({1,2,3,4,5,6}) = 1
P({1,2}) = p(1) + p(2) = 2/6

{1} is an event, but 1 is not.

P and p are different!
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Set comprehension

® Set comprehension is a shorthand for describing sets with constraints.
Plw=3)=P{w:w=3})
Plw > 3) =P{w : w > 3})
P(w is even) = P({w : w € {2,4,6}})
® The variable name does not matter.
P(fw:w > 3}) = P({x : x > 3})
® Always ask what is random.

Plw > t/vV2+3) =P(t < V2w —3)) =P({w : t < V2(w — 3)})
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Continuous probability distribution

The function F is a cumulative distribution
function if

1. F:R—[0,1]

2. F is monotonic, i.e., F(x) < F(y) if
x<y

3. limy500 F(x) =1 and limy oo F(x) =0
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Continuous probability distribution

dF
® A probability density function p is defined as p(u) = a(u) or

® We can construct a probability measure P by letting

b
Pla< X < b) = / p(u)du = F(b) — F(a). 2)

e O =R and P: 2% — R takes a subset of R as input.

10/30



Gaussian distribution
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Sampling notation

We say that a is drawn from a Gaussian if

a~ N(u,a?). (4)
It simply means
1 1
pla) = s e (%2( - u)2> (5)
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Expectation

® Definition

E[x] = / ” p(x)dx Blx] = 3 xp(x) (6)

- xeQ
¢ [E[x] is not a function of x, but a function of p.

® A better notation would be

Esopix[X]- (7)
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The law of unconcious statistician (LOTUS)

® Theorem

Ep( [ (X)] Z/OO f(x)p(x)dx Evplf()] =D f(x)p(x)  (8)

> x€Q

® The theorem needs to be formally proved.

® The f(x) in E[f(x)] is not a function of x, but an expression of x.
IE‘:xrvp(x)[xz]

IEvap(x) [(X - IE)<~p(><)[x])2] - Var[X]
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Free and bound variables

def p(x):
return (1.0 / math.sqrt(2 x math.pi)
* math.exp(—0.5 * (x — mu) * (x — mu))

mu = 0.2
p(0.5)

x = 0.3
p(x = x)

® |s x a free variable or a bound variable? When is it bound and what is it bound to?
® |s mu a free variable or a bound variable?
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Notation hell

When we write p(x), p is not the name of the function, as opposed to when we
write f(x).

When we have multiple distributions, the convention is to use variable names to
distinguish distributions, e.g., p(x), p(y), and p(z).

It gets confusing when we simply write p(a), and the convention is to use keyword
arguments, e.g., p(x = a), p(y = a), and p(z = a).

Note that p(x = a) does not mean p({x : x = a}). Remember that p takes a
point in €, not a subset of .

Sometimes people also write py(a) to mean p(x = a).
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Multiple random variables

Joint distribution p(x, y)

o0

Marginal distribution p(x) = / p(x,y)dy or p(x) = Z p(x,y)

- y€EQy

p(x,y)
p(y)

Conditional distribution p(x|y) =

Note that these are all defined based on p not P.
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Notations again

p(x)= > p(x.y) px(a) = D pey(a, b) (9)

yeQ, beQ,

Px|y(a; b)py(b)
px(a)

p(y|x) = o(x) Py|x(b,a) = (10)
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Bayes rule

L) = Py)p(y)
plx.y) _ pxly)ply) _ — p(xly)p(y)
p(x) p(x) >yeq, P(xly")p(y’)
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Independence

® We say that x and y are independent if
p(x,y) = p(x)p(y) (13)
for any x € Q2 and y € Q,.
® By the definition of conditional probability,

plyix) = P O ), (14)

® In other words, x and y are independent, if given x or not does not change the
probability of y.
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Independence and expectation

o Elcx] = cE[x]
¢ E[x + y|] = E[x] + E[y] if x and y are independent.
By mp() [X Y] = BEeop(o) By mp(y) X + V1] = B [X] 4 By () Y]

e E[xy] = E[x]E[y] if x and y are independent.
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Random variables

We define events (as subsets) and probability measures (a function that maps
subsets to real values).

A probability distribution is a function that maps individual points to real values.

For the purpose of this course, a variable is a random variable if it is associated
with a probability measure.

There is a mathematical definition, but we will not attempt to do it here.
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Random variables

If a ~ U(0,1), then a is random.
If a ~ N(0,1), then a is random.
If e ~ N(0,1), then m+ € is random for some real value m.

In fact, m+ e ~ N(m,1).
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Random variables

® If x ~ N(p1,0%) and y ~ N (2, 03),
x+y~N(p + p2, 0% + 03) (15)

® If uy ~ U(0,1) and up ~ U(0,1), then

71 = \/—2log uy cos(2muy) ~ N(0,1) (16)
71 = \/—2log uy sin(2mus) ~ N(0,1) (17)

® |n general, it is hard to determine the probability distribution solely based on the
algebra of random variables.
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Moment-generating functions

* M, (t) =E[e™] = /_OO e™p(x)dx
My(t) = E[e®] = E 1—i—1t!x—i—;2!x2—|—--~ (18)
1y LEpgs CEp (19)
1 2l

o M.(0) = E[x], M"(0) = E[?], ...

® If M.(t) = M,(t), then x and y has the same probability distribution
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MGF of a Gaussian

Suppose x ~ N (u,0?).
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MGF of a Gaussian

Suppose x ~ N (u,0?).

—1 1 2
E[e™] = | e ——ez2 7" gx (20)
V2nmo?
_ 21-TU2 eﬁ(xz—2,u,x+p,2—2tazx))dx (21)
(O T I / (=t to?)?
— @202 —— [ ez dx 22
V2mo? (22)
— eut+t202/2 (23)
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Linear combination of Gaussians

Suppose x1 ~ N (u1,02) and xa ~ N (2, 03).

We have aijxy + axxo ~ N(a1p1 + azpa, afa% + a%az).
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Linear combination of Gaussians

Suppose x1 ~ N (u1,02) and xa ~ N (2, 03).

E[et(a1xl+32><2)] _ E[eta1X1]E[eta2xz]
et31p1+t2a101/2 t32u2+t2320'§/2

(aly1+32#2)+t2(alal+a202)/2

We have aijxy + axxo ~ N(a1p1 + azpa, afa% + a%a%).

(24)
(25)
(26)
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Independence and identically distributed

® x1,X2,...,X, are called independent and identically distributed (i.i.d.) samples if
X1, X2, ..., X, are mutually independent and are drawn from the same distribution.
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Maximum likelihood

e |f we flip a coin 500 times and see 300 heads, how do we estimate the probability
of getting a head?

® Asusme i.i.d. Bernoulli random variables xi, ..., x, (with probability 8 to be
heads).
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Maximum likelihood

If we flip a coin 500 times and see 300 heads, how do we estimate the probability
of getting a head?

Asusme i.i.d. Bernoulli random variables x, ..., x, (with probability 3 to be
heads).
The likelihood of (3 is

n

pOx1, X2, xn) = POa)p(x2) -+~ p(xn) = [ [ p0) = [[ B7¥(1 = B)1 > (27)
i=1

i=1

The maximum likelihood estimator of 3 is the value that maximizes the likelihood.
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Maximum likelihood

L=logp(x1,...,xa) = Y _[xilog f + (1 — x)log(1 — 5)] (28)
i=1

argmaxH B%(1 — ) = argmax Z[Xi log B+ (1 —x)log(1 - B8)]  (29)
B B

=1 i=1

R e R =

1 n
p= H;Xi (31)
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