Machine Learning

Lecture 3: Linear Regression

Hao Tang

September 29, 2022

First example

First example

Geometry

Geometry

- $S = \{(x_1, y_1), \dots, (x_N, y_N)\}$: data set
 - $-x = \begin{bmatrix} x[1] & \cdots & x[d] \end{bmatrix}^{\top}$: input, features
 - y: ground truth, label, gold reference.
- $f(x) = w^{\top}x + b$: linear predictor, hyperplane
 - $-w = \begin{bmatrix} w[1] & \cdots & w[d] \end{bmatrix}^{\top}$: weights
 - b ∈ \mathbb{R} : bias
 - $\{w, b\}$: parameters

• Given $S = \{(x_1, y_1), \dots, (x_N, y_N)\}$, find w such that the mean-squared error (MSE)

$$L = \frac{1}{N} \sum_{i=1}^{N} (w^{\top} x_i + b - y_i)^2$$
 (1)

is minimized.

• The act of finding w is called training.

• The goal of linear regression is to solve

$$\min_{w,b} \quad \frac{1}{N} \sum_{i=1}^{N} (w^{\top} x_i + b - y_i)^2. \tag{2}$$

• The optimal solution satisfies

$$\frac{\partial L}{\partial b} = 0 \qquad \frac{\partial L}{\partial w} = 0. \tag{3}$$

(Is this optimal? More on this in Lecture 7.)

$$\frac{\partial}{\partial b} \frac{1}{N} \sum_{i=1}^{N} (w^{\top} x_i + b - y_i)^2 = \frac{2}{N} \sum_{i=1}^{N} (w^{\top} x_i + b - y_i)$$

$$= -2b + \frac{2}{N} \sum_{i=1}^{N} (y_i - w^{\top} x_i) = 0$$
(5)

$$b = \frac{1}{N} \sum_{i=1}^{N} (y_i - w^\top x_i) = \frac{1}{N} \sum_{i=1}^{N} y_i - w^\top \left(\frac{1}{N} \sum_{i=1}^{N} x_i \right) = \bar{y} - w^\top \bar{x}$$
 (

$$\frac{\partial L}{\partial b} = 0 \implies b = \bar{y} - w^{\top} \bar{x} \tag{7}$$

$$L = \frac{1}{N} \sum_{i=1}^{N} (w^{\top} x_i + b - y_i)^2 = \frac{1}{N} \sum_{i=1}^{N} [w^{\top} (x_i - \bar{x}) - (y_i - \bar{y})]^2$$

$$= \frac{1}{N} \sum_{i=1}^{N} (w^{\top} x_i' - y_i')^2$$
(9)

(9)

$$\frac{\partial}{\partial w} \frac{1}{N} \sum_{i=1}^{N} (w^{\top} x_i' - y_i')^2 = \frac{2}{N} \sum_{i=1}^{N} (w^{\top} x_i' - y_i')(x_i')$$

$$= \frac{2}{N} \sum_{i=1}^{N} ((w^{\top} x_i') x_i' - y_i' x_i')$$
(11)

$$\frac{\partial}{\partial w} \frac{1}{N} \sum_{i=1}^{N} (w^{\top} x_i' - y_i')^2 = \frac{2}{N} \sum_{i=1}^{N} ((w^{\top} x_i') x_i' - y_i' x_i') \qquad (12)$$

$$= \frac{2}{N} \left[\begin{bmatrix} x_1' & x_2' & \cdots & x_n' \end{bmatrix} \begin{bmatrix} w^{\top} x_1' \\ w^{\top} x_2' \\ \vdots \\ w^{\top} x_n' \end{bmatrix} - \begin{bmatrix} x_1' & x_2' & \cdots & x_n' \end{bmatrix} \begin{bmatrix} y_1' \\ y_2' \\ \vdots \\ y_n' \end{bmatrix} \right]$$

$$= \frac{2}{N} (XX^{\top} w - Xy) = 0 \qquad (14)$$

$$w = (XX^{\top})^{-1}Xy \tag{15}$$

1. Centering

$$y = \begin{bmatrix} y_1 - \bar{y} \\ \vdots \\ y_N - \bar{y} \end{bmatrix} \qquad X = \begin{bmatrix} x_1 - \bar{x} & \cdots & x_N - \bar{x} \end{bmatrix}$$
 (16)

2. Computing the Moore-Penrose pseudoinverse

$$w = (XX^{\top})^{-1}Xy \tag{17}$$

$$b = \bar{y} - w^{\top} \bar{x} \tag{18}$$

Features

$$y = w^{\top} x + b = \begin{bmatrix} w^{\top} & b \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} w \\ b \end{bmatrix}^{\top} \begin{bmatrix} x \\ 1 \end{bmatrix} = w'^{\top} x'$$
 (19)

- Fitting $f(x) = w^{\top}x + b$ is equivalent to appending 1 to x and fitting $f(x) = w^{\top}x$.
- The 1 can be seen as a feature independent of the input.

Features

- Suppose we have a data point $x = \begin{bmatrix} x[1] & x[2] & x[3] \end{bmatrix}^{\top}$.
- The data point after appending 1 becomes

$$\begin{bmatrix} 1 & x[1] & x[2] & x[3] \end{bmatrix}^{\top} \tag{20}$$

The data point after appending 1 and quadratic terms becomes

$$\phi(x) = \begin{bmatrix} 1 & x[1] & x[2] & x[3] & x[1]x[2] & x[2]x[3] & x[1]x[3] & x[1]^2 & x[2]^2 & x[3]^2 \end{bmatrix}^{\top}$$
(21)

• The function $f(x) = w^{\top} \phi(x)$ is a polynomial.

Features

- We call ϕ a feature function.
- In general, ϕ can be any function.
- Instead of $f(x) = w^{T}x + b$, we now have $f(x) = w^{T}\phi(x)$.
- Instead of $X=\begin{bmatrix}x_1 & x_2 & \cdots & x_N\end{bmatrix}$, we have $\Phi=\begin{bmatrix}\phi(x_1) & \phi(x_2) & \cdots & \phi(x_N)\end{bmatrix}$
- The optimal solution for linear regression becomes $w = (\Phi \Phi^{\top})^{-1} \Phi y$.

- A "linear" regression model is linear in the parameters w, **not** the features.
- A linear regression model can fit an arbitrary nonlinear function.
- What are the "right" features?
- What does it mean for the program $w^{\top}\phi(x)$ we write with data to be "correct"?

A probabilistic interpretation

- Assume we cannot get a perfect fit because of noise.
- In particular, we assume the noise is additive and Gussian.
- In other words, $y_i = w^{\top} \phi(x_i) + \epsilon_i$, where $\epsilon_i \sim \mathcal{N}(0, 1)$.
- If $\epsilon_i \sim \mathcal{N}(0,1)$, then $y_i \sim \mathcal{N}(w^\top \phi(x_i), 1)$.
- The log-likelihood of w is

$$\log \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(y_i - w^{\top} \phi(x_i))^2\right)$$
 (22)

A probabilistic interpretation

• Log-likelihood of w

$$\sum_{i=1}^{N} \left[-\frac{1}{2} \log(2\pi) - \frac{1}{2} (y_i - w^{\top} \phi(x_i))^2 \right]$$
 (23)

Mean-squared error

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - w^{\top} \phi(x_i))^2$$
 (24)

• The maximum likelihood estimator is the optimal solution for MSE.

- The complexity of computing $(\Phi\Phi^{\top})\Phi y$ is $O(N^3)$, where N is the number of samples.
- The runtime is not particularly suitable for large data sets.
- Instead of solving min_w L exactly, could we find an approximate solution?
- In exchange, could we have an algorithm that scales better than $O(N^3)$?
- Not all problems have closed-form solutions for $\frac{\partial L}{\partial w}$ anyways.

- We write a program $f(x) = w^{\top} \phi(x)$ with $w = (\Phi \Phi^{\top})^{-1} \Phi y$.
- In what sense is this program "correct"?

Linear regression using matrix calculus

The mean-squared error can be written compactly as

$$L = \|\Phi^{\top} w - y\|_{2}^{2}. \tag{25}$$

• We can expand the mean-squared error as

$$L = \|\Phi^{\top} w - y\|_{2}^{2} = (\Phi^{\top} w - y)^{\top} (\Phi^{\top} w - y) = w^{\top} \Phi \Phi^{\top} w - 2y^{\top} \Phi^{\top} w + y^{\top} y.$$
(26)

• Solving the optimal solution gives

$$\frac{\partial L}{\partial w} = (\Phi \Phi^{\top} + (\Phi \Phi^{\top})^{\top})w - 2\Phi y = 0 \implies w = (\Phi \Phi^{\top})^{-1}\Phi y. \tag{27}$$

Check your understanding

- What is mean-squared error?
- Given a data set, what is the optimal solution for mean-squared error?
- How can we include polynomial features in regression?
- Can linear regression fit nonlinear functions?
- What is the likelihood of a hyperplane under Gaussian noise given a data set?