Machine Learning
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Geometry

y=wx+b
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Geometry

y=w'x+b
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Linear regression

e S={(x1,y1),---,(xn,yn)}: data set

—x=[x[1] - x[d]"

. input, features
— y: ground truth, label, gold reference.
® f(x) = w'x + b: linear predictor, hyperplane

- w= [W[I] W[d]]T: weights
— b € R: bias

- {w, b}: parameters
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Linear regression

® Given S = {(x1,)1),---,(xn,yn)}, find w such that the mean-squared error
(MSE)
T
L= ;(WTX,- +b—y;)? (1)
is minimized.

® The act of finding w is called training.
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Linear regression

® The goal of linear regression is to solve

w,b

® The optimal solution satisfies

oL oL

(Is this optimal? More on this in Lecture 7.)

N
min ZWX,—i—b y,).
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Linear regression
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Linear regression

%—O — b:_}77WT_ (7)
1 < 1<
L=y 2 wixitb—y)’ =53 Wi —%) = (=7 (8)
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Linear regression
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Linear regression
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Linear regression

1. Centering

YN =Y
2. Computing the Moore-Penrose pseudoinverse
w = (XX")"1Xy (17)
b=y—w'x (18)
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Features

el R AR

e Fitting f(x) = w' x + b is equivalent to appending 1 to x and fitting f(x) = w ' x.

® The 1 can be seen as a feature independent of the input.
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Features
® Suppose we have a data point x = [x[1] x|[2] x[3]]T.
® The data point after appending 1 becomes

1 x[1] x[2] x[3]]"

(20)
® The data point after appending 1 and quadratic terms becomes

o) =[1 x[1] 2] x[3] x[1x[2] x[2x3] x[Ux[3] «[1P x[2? x[3%]
(21)

® The function f(x) = w'¢(x) is a polynomial.
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Features

We call ¢ a feature function.

In general, ¢ can be any function.

Instead of f(x) = w'x + b, we now have f(x) = w' ¢(x).
Instead of X = [x1 x2 -+ xn], we have ® = [¢(x1) ¢(x2)

The optimal solution for linear regression becomes w = (& ")~ 1dy.

P(xn)]
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Linear regression

A “linear” regression model is linear in the parameters w, not the features.
A linear regression model can fit an arbitrary nonlinear function.
What are the “right” features?

What does it mean for the program w ' ¢(x) we write with data to be “correct”?
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A probabilistic interpretation

Assume we cannot get a perfect fit because of noise.

In particular, we assume the noise is additive and Gussian.
In other words, y; = w' ¢(x;) + €;, where ¢; ~ N(0,1).

If €; ~ N(0,1), then y; ~ N(w ' é(x;),1).

The log-likelihood of w is

N
log H
i=1

e (—50i—w o))

(22)
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A probabilistic interpretation

® | og-likelihood of w

> |5 tout2n) = 30— w o)’ (23)

® Mean-squared error
L
5 30— wT60)? (24)
i=1

® The maximum likelihood estimator is the optimal solution for MSE.
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Linear regression

The complexity of computing (®® ")y is O(N3), where N is the number of
samples.

The runtime is not particularly suitable for large data sets.
Instead of solving min,, L exactly, could we find an approximate solution?
In exchange, could we have an algorithm that scales better than O(N3)?

Not all problems have closed-form solutions for g—ML/ anyways.
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Linear regression

® We write a program f(x) = w ' ¢(x) with w = (¢ ") 1oy,

® |n what sense is this program “correct”?
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Linear regression using matrix calculus

® The mean-squared error can be written compactly as
T 2
L=[® w—yls. (25)
® \We can expand the mean-squared error as

L= 67w —yl3=(®Tw—y) (®Tw—y)=w o6 Tw—-2T0Tw+yTy.
(26)

® Solving the optimal solution gives

ngv = (¢0 +(¢01) w20y =0 = w=(907)Tdy.  (27)
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Check your understanding

What is mean-squared error?

Given a data set, what is the optimal solution for mean-squared error?
How can we include polynomial features in regression?

Can linear regression fit nonlinear functions?

What is the likelihood of a hyperplane under Gaussian noise given a data set?
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