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Topics - you should be able to explain after this week

How to quantify information / how to measure the amount of information?
History of information theory (nE)

Information content (aka self-information, Shannon information)

Entropy

Conditional entropy

Mutual information

Cross entropy

Kullback-Leibler divergence

Application of information theory for the training of classifiers
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Warming up

® What is meant by “information”?

o facts provided or learned about something or someone [ODE]
o what is conveyed of represented by a particular arrangement or sequence of things

[ODE]

o about someone or something consists of facts about them [Cobuild]
o consisting of the facts and figures that are stored and used by a computer program

[Cobuild]

® Which has more information/surprising?

Event
USB memory 2GB 32GB
Weather tomorrow || rainy snowy
Next MLG lecture || Mon, 2nd Oct. | Tue, 3rd Oct.
Roll a dice got 1 got 6
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How to define the amount of information?

Let /(x) denote the amount of information for event x

Desired properties of /(x):
® Monotonically decreasing function of probability
olfp(x)=1 — I(x)=0
olf p(x)=0 — I(x) =00
® Additivity of independent events
o If p(x,y) = p(x)p(y) — 1(x,y) = 1(x) +1(y)
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How to define the amount of information?

Let /(x) denote the amount of information for event x

Desired properties of /(x):
® Monotonically decreasing function of probability
olfp(x)=1 — I(x)=0
olf p(x)=0 — I(x) =00

® Additivity of independent events
o If p(x,y) = p(x)p(y) — 1(x,y) = 1(x) +1(y)
Candidates of /(x):

1
| X

log (ﬁ)

Choice of logarithmic base:

|Og2 ( ) [bltS] |Oge (%) [nats] (We use log to denote log, here)
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How to define similarity between two distributions?

Px(x) vs py(y)
® Euclidean distance
® Pearson correlation coefficient

® Any measures based on probability?
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1948

1951
1966
1972

1989

History of information theory (v

Claude E. Shannon, " A Mathematical Theory of Commu-
nication”, Bell System Technical Journal

Huffman encoding
Linear Predictive Coding (LPC) by Fumitada Itakura
Discrete Cosine Transform (DCT) by Nasir Ahmed

— MPEG video coding, JPEG image compression, MP3
audio compression

Zip file format by Phil Katz

(€7 IREET EY Y Y FET]

Shannon, Claude - Author: Jacobs,
Konrad — Source: Konrad Jacobs,

Erlangen — Copyright: MFO. CC
BY-SA 2.0 de
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https://en.wikipedia.org/wiki/Mathematical_Research_Institute_of_Oberwolfach

Channel coding

sender

Y

receiver

® \We want to send a message with minimal number of bits.

® We don’t know the message ahead of time.
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® ASCII codes (NE)

® Morse code (NE)

Sending letters

ASCII code
Letter Dec | Hex Bin
A 65 | 41 | 01000001
'B’ 66 | 42 | 01000010
C 67 | 43 | 01000011
VA 90 | 5A | 01011010
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Sending letters

® ASCII codes (NE)

ASCII code
Letter Dec | Hex Bin
A 65 41 | 01000001
'B’ 66 42 | 01000010
C 67 43 | 01000011
7' 90 | 5A | 01011010
® Morse code (NE)
® Unit of coding
o Letter
o Two letters, three letters, ...
o Word

o Two words, three words, ...
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Sending coin flips

How many bits do we need to send a coin flip?
We need 1 bit per message.
How many bits do we need to send two coin flips?

We need 2 bits per message
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Sending coin flips

If it's a fair coin, p(H) = p(T) =1/2.
If there are two fair coins, p(HH) = p(HT) = p(TH) = p(TT) = 1/4.

The number of bits to encode a variable x is

log; p(lx) = —logy p(x).

Low-probability events need more bits, while high-probability events need fewer
bits.

— log, p(x) bits are equivalent to — log p(x) nats.

(1)
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Entropy

® The entropy of a distribution p is defined as

H(p) = H(x) = By [ log p()]. 2)
NB:
Bl logp()] = — [ p()logp()ax or —Y p(x)loga(x) (3
- xeQ

¢ Note that H(x) is not a function of x.

® The entropy can be interpreted as the expected number of nats needed to a
message.
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Entropy of a coin

For a coin with probability u being head, its
entropy is —ulogu — (1—u) log(1—u).

The entropy peaked at u = 0.5.

In general, the entropy of a distribution is
higher when the distribution is closer to

entropy [bit]
o
w
o

uniform. 0.001

Entropy can be seen as a measure of
uncertainty.

0.00

0.25

0.50

0.75

1.00
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Conditional entropy

® The conditional entropy of x given y is
H(X|y) = IE:x,yrvp(x,y) [_ |Og p(X‘y)] (4)

® |f x and y are independent,

H(xly) =E

o PO y)}

x,y~p(X,y) [_ p(y)

=FE

| ]
= Ex ymp(x.y)[— log p(x)] (7)
= By p(x) [ log p(x)] (8)
= H(x) (9)
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Conditional entropy

® Knowing something reduces the entropy in
general.

H(xly) < H(x) (10)
® The proof requires a basic fact

logt <t—1 for t > 0. (11)

—logt>1—t for t > 0. (12)

| —t-1
—— logt
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Conditional entropy

H(x) — Hxly) = Eveppol— 108 p()] — Exymppey) [—log”(x’”} (13)

P(y)
ZEx,yfvp(x,y)[ fo p,gzipi))} ()
i
—1—221’ 2 Xpy)) (10)

—1—ZP )Y p(y)=0 (17)
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Mutual information

® Since H(x|y) < H(x), the extra information H(x) — H(x|y) we know about x
given y is called the mutual information

I(x,y) = H(x) = H(x|y) = H(y) — H(y|x) (18)
= Ex,ywp(x,y) |:— |Og (())( )(/})/):| (19)
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Cross entropy
Recall that the entropy [, ,()[— log p(x)] can be interpreted as drawing a
message x from p(x) and sending it with — log p(x) nats.
This assumes that we know p. What happens if we do not?
We estimate p with some other distribution gq.

The expected number of nats (under p) of encoding messages with distribution g
is the cross entropy

H(pa q) = EXNP(X)[_ log q(X)] (20)

NB: the notation H(p, q) is also used to denote joint entropy H(x,y)! (NE)
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Cross entropy

® \We need more nats if we encode messages with a distribution g other than the
true distribution p.

H(p) < H(p, q). (21)

® The proof uses the inequality logt < t—1 again.
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Cross entropy

H(p,q) — H(p) = Expix)[—l0g q(x)] = Exwp(x) [~ log p(x)] (22)
= Exwp(x) |:— Iog ZEiﬂ (23)
)
= et [1 p(x)} 2
—1- Y p0 3 g (25)

p(x)

X
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Kullback-Leibler divergence

The extra nats of encoding with the wrong distribution is the Kullback-Leibler
divergence

KL(pllq) = H(p, q) — H(p) (26)

= Eyp() {—/ogzgﬂ (27)
KL(pllg) =0
KL(p[p) =0

KL divergence is often used to measure the distance between two distributions.

However, in general, KL(p||q) # KL(q||p).
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Mutual information

® Recall that
I(x,y) = H(x) — H(x|y) = H(y) — H(y|x) (28)
= Ex,ywp(x,y) |:— |Og (())< )(/})/):| (29)

® In other words, /(x,y) = KL(p||q) where g(x, y) = p(x)p(y).

® Mutual information can be interpreted as the number of extra nats if we assume x
and y are independent.
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Cross entropy and log loss

® Recall that in multiclass classification,

_exp(wy $(x))
plylx) = ey w100 (30)
® The log loss is
—log p(y*|x) = —w,.d(x) +log [ > we(x) (31)

y'ey

where y* is the label.
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Cross entropy and log loss

® Given a data point (x,y™*), we can represent the ground truth as a distribution

ply) = 1,y (32)

® The cross entropy between the ground truth and the learned distribution is

Eypiy)[—log p(y[x)] = > p(y)[~ log p(v1x)] (33)
yeYy

= S 1y [ log (1)) (34
yey

= — log p(y*|x). (35)

® Hence, the log loss is also known as the cross entropy loss.
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Textbooks

e M1: Chap.6
e M2: Chap.5
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Quizzes

Derive the entropy of a coin with probability 5 being head.
Find 5 that maximises the entropy of that coin.
Derive the entropy of a uniform distribution.

Derive the cross entropy between a discrete distribution against a one-hot
distribution.

Derive the KL-divergence between a discrete distribution against a one-hot
distribution.

Derive the entropy of a Gaussian.
Derive the cross entropy of two Gaussians.

Are entropies always positive?
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