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Topics - you should be able to explain after this week

• How to quantify information / how to measure the amount of information?

• History of information theory (NE)

• Information content (aka self-information, Shannon information)

• Entropy

• Conditional entropy

• Mutual information

• Cross entropy

• Kullback-Leibler divergence

• Application of information theory for the training of classifiers
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Warming up

• What is meant by “information”?

◦ facts provided or learned about something or someone [ODE]
◦ what is conveyed of represented by a particular arrangement or sequence of things

[ODE]
◦ about someone or something consists of facts about them [Cobuild]
◦ consisting of the facts and figures that are stored and used by a computer program

[Cobuild]

• Which has more information/surprising?

Event

USB memory 2GB 32GB

Weather tomorrow rainy snowy

Next MLG lecture Mon, 2nd Oct. Tue, 3rd Oct.

Roll a dice got 1 got 6
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How to define the amount of information?

Let I (x) denote the amount of information for event x

Desired properties of I (x):
• Monotonically decreasing function of probability

◦ If p(x) = 1 → I (x) = 0
◦ If p(x) = 0 → I (x) = ∞

• Additivity of independent events
◦ If p(x , y) = p(x)p(y) → I (x , y) = I (x) + I (y)

Candidates of I (x):
1

p(x) ✗

log
(

1
p(x)

)
✓

Choice of logarithmic base:

log2

(
1

p(x)

)
[bits], loge

(
1

p(x)

)
[nats] (We use log to denote loge here)
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How to define similarity between two distributions?

px(x) vs py (y)

• Euclidean distance

• Pearson correlation coefficient

• Any measures based on probability?
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History of information theory (NE)

1948 Claude E. Shannon, ”A Mathematical Theory of Commu-
nication”, Bell System Technical Journal

1951 Huffman encoding

1966 Linear Predictive Coding (LPC) by Fumitada Itakura

1972 Discrete Cosine Transform (DCT) by Nasir Ahmed

→ MPEG video coding, JPEG image compression, MP3
audio compression

1989 Zip file format by Phil Katz

Shannon, Claude - Author: Jacobs,
Konrad — Source: Konrad Jacobs,
Erlangen — Copyright: MFO. CC

BY-SA 2.0 de

6 / 25
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Channel coding

sender receiver

• We want to send a message with minimal number of bits.

• We don’t know the message ahead of time.
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Sending letters

• ASCII codes (NE)

ASCII code
Letter Dec Hex Bin

’A’ 65 41 01000001
’B’ 66 42 01000010
’C’ 67 43 01000011
...

...
...

...
’Z’ 90 5A 01011010

• Morse code (NE)

• Unit of coding
◦ Letter
◦ Two letters, three letters, ...
◦ Word
◦ Two words, three words, ...
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Sending coin flips

• How many bits do we need to send a coin flip?

• We need 1 bit per message.

• How many bits do we need to send two coin flips?

• We need 2 bits per message
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Sending coin flips

• If it’s a fair coin, p(H) = p(T ) = 1/2.

• If there are two fair coins, p(HH) = p(HT ) = p(TH) = p(TT ) = 1/4.

• The number of bits to encode a variable x is

log2
1

p(x)
= − log2 p(x). (1)

• Low-probability events need more bits, while high-probability events need fewer
bits.

• − log2 p(x) bits are equivalent to − log p(x) nats.
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Entropy

• The entropy of a distribution p is defined as

H(p) = H(x) = Ex∼p(x)[− log p(x)]. (2)

NB:

Ex∼p(x)[− log p(x)] = −
∫ ∞

−∞
p(x) log p(x)dx or −

∑
x∈Ω

p(x) log p(x) (3)

• Note that H(x) is not a function of x .

• The entropy can be interpreted as the expected number of nats needed to a
message.
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Entropy of a coin

• For a coin with probability u being head, its
entropy is −u log u − (1−u) log(1−u).

• The entropy peaked at u = 0.5.

• In general, the entropy of a distribution is
higher when the distribution is closer to
uniform.

• Entropy can be seen as a measure of
uncertainty.
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Conditional entropy

• The conditional entropy of x given y is

H(x |y) = Ex ,y∼p(x ,y)[− log p(x |y)] (4)

• If x and y are independent,

H(x |y) = Ex ,y∼p(x ,y)

[
− log

p(x , y)

p(y)

]
(5)

= Ex ,y∼p(x ,y)

[
− log

p(x)p(y)

p(y)

]
(6)

= Ex ,y∼p(x ,y)[− log p(x)] (7)

= Ex∼p(x)[− log p(x)] (8)

= H(x) (9)
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Conditional entropy

• Knowing something reduces the entropy in
general.

H(x |y) ≤ H(x) (10)

• The proof requires a basic fact

log t ≤ t − 1 for t > 0. (11)

Or,

− log t ≥ 1− t for t > 0. (12)
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Conditional entropy

H(x)− H(x |y) = Ex∼p(x)[− log p(x)]− Ex ,y∼p(x ,y)

[
− log

p(x , y)

p(y)

]
(13)

= Ex ,y∼p(x ,y)

[
−log

p(x)p(y)

p(x , y)

]
(14)

≥ Ex ,y∼p(x ,y)

[
1− p(x)p(y)

p(x , y)

]
(15)

= 1−
∑
x

∑
y

p(x , y)
p(x)p(y)

p(x , y)
(16)

= 1−
∑
x

p(x)
∑
y

p(y) = 0 (17)
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Mutual information

• Since H(x |y) ≤ H(x), the extra information H(x)− H(x |y) we know about x
given y is called the mutual information

I (x , y) = H(x)− H(x |y) = H(y)− H(y |x) (18)

= Ex ,y∼p(x ,y)

[
− log

p(x)p(y)

p(x , y)

]
(19)
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Cross entropy

• Recall that the entropy Ex∼p(x)[− log p(x)] can be interpreted as drawing a
message x from p(x) and sending it with − log p(x) nats.

• This assumes that we know p. What happens if we do not?

• We estimate p with some other distribution q.

• The expected number of nats (under p) of encoding messages with distribution q
is the cross entropy

H(p, q) = Ex∼p(x)[− log q(x)]. (20)

• NB: the notation H(p, q) is also used to denote joint entropy H(x , y)! (NE)
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Cross entropy

• We need more nats if we encode messages with a distribution q other than the
true distribution p.

H(p) ≤ H(p, q). (21)

• The proof uses the inequality log t ≤ t−1 again.
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Cross entropy

H(p, q)− H(p) = Ex∼p(x)[− log q(x)]− Ex∼p(x)[− log p(x)] (22)

= Ex∼p(x)

[
− log

q(x)

p(x)

]
(23)

≥ Ex∼p(x)

[
1− q(x)

p(x)

]
(24)

= 1−
∑
x

p(x)
q(x)

p(x)
= 0 (25)
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Kullback-Leibler divergence

• The extra nats of encoding with the wrong distribution is the Kullback-Leibler
divergence

KL(p∥q) = H(p, q)− H(p) (26)

= Ex∼p(x)

[
−log

q(x)

p(x)

]
(27)

• KL(p∥q) ≥ 0

• KL(p∥p) = 0

• KL divergence is often used to measure the distance between two distributions.

• However, in general, KL(p∥q) ̸= KL(q∥p).
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Mutual information

• Recall that

I (x , y) = H(x)− H(x |y) = H(y)− H(y |x) (28)

= Ex ,y∼p(x ,y)

[
− log

p(x)p(y)

p(x , y)

]
(29)

• In other words, I (x , y) = KL(p∥q) where q(x , y) = p(x)p(y).

• Mutual information can be interpreted as the number of extra nats if we assume x
and y are independent.
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Cross entropy and log loss

• Recall that in multiclass classification,

p(y |x) =
exp(w⊤

y ϕ(x))∑
y ′∈Y w⊤

y ′ϕ(x)
. (30)

• The log loss is

− log p(y∗|x) = −w⊤
y∗ϕ(x) + log

∑
y ′∈Y

w⊤
y ′ϕ(x)

 (31)

where y∗ is the label.
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Cross entropy and log loss

• Given a data point (x , y∗), we can represent the ground truth as a distribution

p(y) = 1y=y∗ (32)

• The cross entropy between the ground truth and the learned distribution is

Ey∼p(y)[− log p(y |x)] =
∑
y∈Y

p(y)[− log p(y |x)] (33)

=
∑
y∈Y

1y=y∗ [− log p(y |x)] (34)

= − log p(y∗|x). (35)

• Hence, the log loss is also known as the cross entropy loss.
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Textbooks

• M1: Chap.6

• M2: Chap.5
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Quizzes

• Derive the entropy of a coin with probability β being head.

• Find β that maximises the entropy of that coin.

• Derive the entropy of a uniform distribution.

• Derive the cross entropy between a discrete distribution against a one-hot
distribution.

• Derive the KL-divergence between a discrete distribution against a one-hot
distribution.

• Derive the entropy of a Gaussian.

• Derive the cross entropy of two Gaussians.

• Are entropies always positive?
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