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Linear regression
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Linear regression

• We have learned how to write a program f (x) = w⊤ϕ(x) with data.

• More abstractly, we have learned how to write a program f : Rd → R with data.

• If we have k regression models, we can learn a program f : Rd → Rk with data.

• In fact, we can write f (x) = W⊤ϕ(x) where W is now a matrix instead of a
vector to implement Rd → Rk . (What’s the optimal solution in this case?)
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Linear classification
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Linear classification

• We have learned how to write a program f (x) = w⊤ϕ(x) with data.

• The input is of type Rd .

• The output is of type Y, where Y is a finite, discrete set.

• When Y is {+1,−1}, the task is called binary classification; otherwise, it is
multiclass classification.
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Problem reduction

Problem A Problem B

Solution B

Algorithm B

Solution A

Problem B is harder than Problem A
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Digit recognition
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Digit recognition

• The input is of type R28×28.

• The output is of type {0, 1, . . . , 9}.

• The goal is to learn a function R28×28 → {0, 1, . . . , 9}.

• The task is multiclass classification.
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Multiclass classification

• Recall that we use

f (x) = argmax
y∈Y

w⊤
y ϕ(x) (1)

to make prediction.

• Think of wy as a “template” of the class y , and think of dot product as a
measure of similarity.

• The function f can be interpreted as finding the class that is the most similar to
the input.
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Learned w

10 / 28



Face recognition

Image credit: (Triantafyllidou and Tefas, 2016)
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Face recognition

• Is there a face in the image?

• The input is of type Rm×n, the set of images of m × n pixels.

• The output is of type {+1,−1}.

• This is binary classification.
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Face recognition
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Face recognition

• Where is the face?

• Instead of asking where, we can ask if a bounding box is good.

• The input is of type Rm×n × N2 × N2.

• The output is of type {+1,−1}.

• This is binary classification.
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Speaker identification
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Speaker identification

• Who is this?

• The input is of type RT , the set of T -sample waveforms.

• The output is of type {1, . . . ,K}, say, if we have K speakers.

• This is multiclass classification.
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Speaker recognition
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Speaker recognition

• Is this the same person?

• The input is of type RT × RT , pairs of T -sample waveforms.

• The output is of type {+1,−1}.

• This is binary classification.
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Speech recognition

She had your dark suit in greasy wash water all year.
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Speech recognition

• The input is of type RT , a T -sample waveform.

• The output is of type V ∗, where V is a set of possible words.

• The type V ∗ is called the Kleene closure of V , meaning zero or more items
concatenated.

• One common approach is to cast this problem as a sequence of multiclass
classification.
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Speech synthesis

She had your dark suit in greasy wash water all year.
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Speech synthesis

• The input is of type V ∗, a set of sentences.

• The output is of type RT , a set of T -sample waveforms.

• One common approach is to cast this problem as a sequence of regression.
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Sentiment analysis

Meets all expectations. Solid build. Quick charge. Great multi coloured lights. Even
the touch pad ain’t too bad. Not as good as a £500 laptop obviously but does the job.
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Sentiment analysis

• The input is of type V ∗, the set of sentences.

• A word can be represented as a one-hot R|V | vector.

• The output is of type {1, 2, . . . , 5}.

• This is a multiclass classification.
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Machine translation
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Machine translation
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Machine translation

• The input is of type U∗, the set of sentences in one language.

• The output is of type V ∗, the set of sentences in another language.

• One common approach is to cast this problem as a sequence of multiclass
classification.
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Example representations

• SIFT and HOG features for images

• Co-occurrences and n-grams for texts

• Spectrograms for speech

• Representations learned by neural networks
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