Machine Learning
Lecture 7: Optimization 1

Hao Tang

October 6, 2022
• For mean-squared error

\[
L = \frac{1}{N} \sum_{i=1}^{N} (w^\top \phi(x_i) - y_i)^2,
\]

we know that

\[
w^* = (\Phi \Phi^\top)^{-1} \Phi y
\]

is the solution of \(\frac{\partial L}{\partial w} = 0 \).

• How do we know \(w^* \) is the optimal point?
• For log loss

\[L = \sum_{i=1}^{N} \log \left(1 + \exp\left(-y_i w^\top \phi(x_i) \right) \right) \]

we cannot even solve \(\frac{\partial L}{\partial w} = 0 \).

• How do we find the optimal solution?

• Could we find an approximate solution?
Convex optimization

\[\frac{\partial L}{\partial w} = 0 \]
Optimization

- Suppose $f : \mathbb{R}^d \to \mathbb{R}$.

- The goal is solve

\[
\min_x f(x).
\]

(4)

- Note $\min_x f(x) \leq f(y)$ for any y.

- We want to find x^* such that $f(x^*) = \min_x f(x)$.

- The point x^* is called the optimal solution or the minimizer of f.

- There might not be a minimizer or there might have many, not just one. (In most case, we are content with finding one.)
A function \(f \) is **convex** if

\[
f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y),
\]

for every \(x, y \), and \(0 \leq \alpha \leq 1 \).
\[
\alpha x + (1 - \alpha) y \leq f(\alpha x + (1 - \alpha) y)
\]
\[\alpha f(x) + (1 - \alpha) f(y) \leq f(\alpha x + (1 - \alpha) y) \]
\[\alpha x + (1 - \alpha) y \]
\[\alpha x + (1 - \alpha)y \]
\[\alpha f(x) + (1 - \alpha) f(y) \leq f(\alpha x + (1 - \alpha)y)\]
Properties of convex functions

If \(f \) is convex, then

\[
f(x) \geq f(y) + (x - y)^{\top} \nabla f(y),
\]

for any \(x \) and \(y \).

Proof:

\[
f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y)
\]
\[
\alpha f(y) + f(y + \alpha(x - y)) - f(y) \leq \alpha f(x)
\]
\[
f(y) + \frac{f(y + \alpha(x - y)) - f(y)}{\alpha} \leq f(x)
\]
\[
f(y) + (x - y)^{\top} \nabla f(y) \leq f(x)
\]
Supporting hyperplanes
Supporting hyperplanes
• Is the mean-squared error

\[L = \frac{1}{N} \sum_{i=1}^{N} (w^\top \phi(x_i) - y_i)^2 \]

convex in \(w \)?

• The definition itself is not always easy to use for checking convexity.
A sufficient condition: Second derivative

- If $\nabla^2 f(x)$ exists and $\nabla^2 f(x) \succeq 0$ for all x, then f is convex.

- When we write $\nabla^2 f(x) \succeq 0$, we say that $\nabla^2 f(x)$ is positive semi-definite.

- A matrix H is positive semi-definite, if $\nu^\top H \nu \geq 0$ for every ν.
The squared distance $\ell(s) = (s - s')^2$ is convex in s.

$$\frac{\partial^2 \ell}{\partial s^2} = 2 \geq 0$$
Affine transform preserves convexity

- If \(f \) is convex, then \(g(x) = f(Ax + b) \) is also convex.

\[
g(\alpha x + (1 - \alpha)y) = f(\alpha(Ax + b) + (1 - \alpha)(Ay + b)) \\
\leq \alpha f(Ax + b) + (1 - \alpha)f(Ay + b) = \alpha g(x) + (1 - \alpha)g(y)
\]
Nonnegative weighted sum of convex functions

• If \(f_1, \ldots, f_k \) are convex, then \(f = \beta_1 f_1 + \cdots + \beta_k f_k \) is also convex when \(\beta_1, \ldots, \beta_k \geq 0 \)

\[
f(\alpha x + (1 - \alpha)y) = \beta_1 f_1(\alpha x + (1 - \alpha)y) + \cdots + \beta_k f_k(\alpha x + (1 - \alpha)y)
\]
\[
\leq \beta_1 \alpha f_1(x) + \beta_1 (1 - \alpha)f(y) + \cdots + \beta_k \alpha f_k(x) + \beta_k (1 - \alpha)f_k(y)
\]
\[
= \alpha (\beta_1 f_1(x) + \cdots + \beta_k f_k(x)) + (1 - \alpha)(\beta_1 f_1(y) + \cdots + \beta_k f_k(y))
\]
\[
= \alpha f(x) + (1 - \alpha)f(y)
\]
Convexity of MSE

- The mean-squared error is

\[L = \frac{1}{N} \sum_{i=1}^{N} (w^\top \phi(x_i) - y_i)^2. \] (15)

- We know that the squared distance is convex.

- Use the affine transform and nonnegative weighted sum to obtain the mean-squared error.
If f is convex and

$$\nabla f(x^*) = 0 \quad (16)$$

at x^*, then x^* is the minimizer of f.

Proof: Suppose $\nabla f(x^*) = 0$. For any x,

$$f(x) \geq f(x^*) + (x - x^*)^\top \nabla f(x^*) = f(x^*). \quad (17)$$
Optimal solution of MSE

- The mean-squared error is
 \[L = \frac{1}{N} \sum_{i=1}^{N} (w^\top \phi(x_i) - y_i)^2. \]

- The solution to \(\frac{\partial L}{\partial w} = 0 \) is \(w^* = (\Phi \Phi^\top)^{-1} \Phi y \).

- Because \(L \) is convex in \(w \), \(w^* \) is the global minimum.
Convexity of log loss

• The log loss in the binary case is

\[L = \sum_{i=1}^{N} \log \left(1 + \exp(-y_i w^\top \phi(x_i)) \right). \]

(19)

• We just need to show \(\ell(s) = \log(1 + \exp(-s)) \) is convex in \(s \).

• Use affine transform and nonnegative weighted sum to obtain the log loss.
\[\frac{\partial \ell}{\partial s} = \frac{- \exp(-s)}{1 + \exp(-s)} = \frac{1}{1 + \exp(-s)} - 1 \quad (20) \]

\[\frac{\partial^2 \ell}{\partial s^2} = \frac{1}{1 + \exp(-s)} \frac{\exp(-s)}{1 + \exp(-s)} = \frac{1}{1 + \exp(-s)} \left(1 - \frac{1}{1 + \exp(-s)} \right) \geq 0 \quad (21) \]
Strong convexity

A function f is μ-strongly convex if

$$f(y) \geq f(x) + (y - x)^T \nabla f(x) + \frac{\mu}{2} \|y - x\|^2$$

(22)

for any x and y.
Quadratic lower bound
Quadratic lower bound
Lipschitz continuous

- A function is L-Lipschitz if

$$|f(x) - f(y)| \leq L \|x - y\|$$

(23)

for any x and y.

- In words, the function values can only change so much for points that are close.
Smoothness

• When the gradient of f is L-Lipschitz, then we say that f is L-smooth.

• In other words, f is L-smooth if

$$
\|\nabla f(y) - \nabla f(x)\| \leq L\|y - x\|
$$

(24)

for any x and y.

• L-smoothness also implies

$$
f(y) \leq f(x) + (y - x)^T \nabla f(x) + L\|x - y\|_2^2.
$$

(25)
\[f(y) - f(x) - (y - x)^\top \nabla f(x) \leq \nabla f(y)^\top (y - x) - \nabla f(x)^\top (y - x) \leq (\nabla f(y) - \nabla f(x))^\top (y - x) \leq \| \nabla f(y) - \nabla f(x) \| \| y - x \| \leq L \| y - x \|^2 \]
Quadratic upper bound
Quadratic upper bound
Check your understanding

- What is the definition of convex functions?
- Can you show that a convex function is supported by hyperplanes everywhere?
- Can you show that mean-squared error is convex in w?
- Can you show that log loss is convex in w?
- How does a function being convex help us do optimization?
- What are strongly convex functions?
- What are Lipschitz continuous functions?
- What are Lipschitz smooth functions?