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® For mean-squared error

LN
L= NZ(WTéf)(Xi) - yi)% (1)

i=1
we know that
w* = (7)) Toy (2)

R . oL __
is the solution of S = 0.

¢ How do we know w* is the optimal point?
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® For log loss

N

L=> log (1 + eXP(—}/iWT¢(Xi))> (3)

i=1

we cannot even solve % =0.

® How do we find the optimal solution?

® Could we find an approximate solution?
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Convex optimization
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Optimization

Suppose f : RY — R.
The goal is solve

min f(x). (4)

X

Note min, f(x) < f(y) for any y.
We want to find x* such that f(x*) = min, f(x).
The point x* is called the optimal solution or the minimizer of f.

There might not be a minimizer or there might have many, not just one. (In most
case, we are content with finding one.)
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Convex functions

A function f is convex if
flax + (1 —a)y) < af(x) + (1 - a)f(y), (5)

for every x, y,and 0 < a < 1.
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ax+(1—-a)y
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ax+(1—-a)y
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af(x)+ (1 —a)f(y)
VI

flax+ (1 —a)y)
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Properties of convex functions

If f is convex, then
f(x) > f(y) + (x = y) 'VF(y), (6)

for any x and y.

Proof:

flax + (1 —a)y) < af(x)+ (1 — a)f(y)
<«

af(y) +f(y +a(x—y)) — f(y) < af(x)
Fly)+ (x —y) VF(y) < f(x)
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Supporting hyperplanes

9/26



Supporting hyperplanes
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® |s the mean-squared error

1 ¢ T 2
L= 5> (w"60q) ) ™)
i=1

convex in w?

® The definition itself is not always easy to use for checking convexity.
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A sufficient condition: Second derivative

® If V2f(x) exists and V2f(x) = 0 for all x, then f is convex.
® When we write V2f(x) = 0, we say that V2f(x) is positive semi-definite.

® A matrix H is positive semi-definite, if v Hv > 0 for every v.
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Convexity of squared distance

® The squared distance £(s) = (s — s’)? is convex in s.
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Affine transform preserves convexity

® If f is convex, then g(x) = f(Ax + b) is also convex.

glax+ (1 —a)y) = f(a(Ax + b) + (1 — «)(Ay + b)) (9)
< af(Ax+ b) + (1 — a)f(Ay + b) = ag(x) + (1 — a)g(y) (10)
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Nonnegative weighted sum of convex functions

® |f fi,...,f, are convex, then f = B1f; + - -+ + Bkfk is also convex when
/817 <o 76k Z 0
flax+ (1 —a)y) = prha(ax + (1 —a)y) + - + Befi(ax + (1 — a)y) (11)
< Prafi(x) + B1(1 — a)f(y) + - + Braf(x) + Br(1 — a)f(y)
(12)
= a(Brfi(x) + -+ Bicfu(x)) + (1 — a)(BrAaly) + - - + Bifi(y))
(13)

=af(x)+ (1 —a)f(y) (14)
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Convexity of MSE

® The mean-squared error is

(wo(x:) — yi)>. (15)

||M2

® \We know that the squared distance is convex.

® Use the affine transform and nonnegative weighted sum to obtain the
mean-squared error.
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Optimality condition

If fis convex and
Vi(x*)=0
at x*, then x* is the minimizer of f.

Proof: Suppose Vf(x*) = 0. For any x,

f(x) > F(x*) + (x — x*) T VF(x*) = £(x*).

(16)

(17)
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Optimal solution of MSE

® The mean-squared error is

(w'o(x;) — yi)2 (18)

||Mz

® The solution to 8% =0isw" = (¢dT) 1oy,

® Because L is convex in w, w* is the global minimum.

17/26



Convexity of log loss

® The log loss in the binary case is

N
L=> log <1 + eXP(—YiWTCb(Xi))) : (19)
i=1

® We just need to show ¢(s) = log(1 + exp(—s)) is convex in s.

® Use affine transform and nonnegative weighted sum to obtain the log loss.
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ol —exp(—s) 1

ds  1+exp(—s) 1+exp(—s) L (20)
0% _ 1 exp(—s) 1 R
952 1+ exp(—s) 1 +exp(—s) 1+ exp(—s) (1 17 exp(—5)> >0 (21)
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Strong convexity

e A function f is p-strongly convex if
T H 2
Fly) 2 F(x) + (v = x) V) + Slly = x| (22)

for any x and y.
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Quadratic lower bound
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Quadratic lower bound
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Lipschitz continuous

e A function is L-Lipschitz if

[F(x) = f(¥)l < Lix =yl (23)

for any x and y.

® |n words, the function values can only change so much for points that are close.
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Smoothness

® When the gradient of f is L-Lipschitz, then we say that f is L-smooth.

® |n other words, f is L-smooth if

IVE(y) = VI < Llly — x| (24)

for any x and y.

® [-smoothness also implies

Fly) < F(x) + (v = x) ' VF(x) + Lix = 3. (25)
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Fy) = f(x) = (y — %) VF(x) (26)
< V() (y = x) = VF() (v — x) (27)
< (VF(y) = VF(x) " (y — x) (28)
< |[VF(y) = VE)Illly — x| (29)
< Ly —x|? (30)
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Quadratic upper bound

25 /26



Quadratic upper bound
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Check your understanding

What is the definition of convex functions?

Can you show that a convex function is supported by hyperplanes everywhere?
Can you show that mean-squared error is convex in w?

Can you show that log loss is convex in w?

How does a function being convex help us do optimization?

What are strongly convex functions

What are Lipschitz continuous functions?

What are Lipschitz smooth functions?
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