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• For mean-squared error

L =
1

N

N∑
i=1

(w⊤ϕ(xi )− yi )
2, (1)

we know that

w∗ = (ΦΦ⊤)−1Φy (2)

is the solution of ∂L
∂w = 0.

• How do we know w∗ is the optimal point?

2 / 26



• For log loss

L =
N∑
i=1

log

(
1 + exp(−yiw

⊤ϕ(xi ))

)
(3)

we cannot even solve ∂L
∂w = 0.

• How do we find the optimal solution?

• Could we find an approximate solution?
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Convex optimization

w

L

w∗

∂L

∂w
= 0
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Optimization

• Suppose f : Rd → R.

• The goal is solve

min
x

f (x). (4)

• Note minx f (x) ≤ f (y) for any y .

• We want to find x∗ such that f (x∗) = minx f (x).

• The point x∗ is called the optimal solution or the minimizer of f .

• There might not be a minimizer or there might have many, not just one. (In most
case, we are content with finding one.)
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Convex functions

A function f is convex if

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y), (5)

for every x , y , and 0 ≤ α ≤ 1.
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x y

αx + (1− α)y

αf (x) + (1− α)f (y)

≤

f (αx + (1− α)y)
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Properties of convex functions

If f is convex, then

f (x) ≥ f (y) + (x − y)⊤∇f (y), (6)

for any x and y .

Proof:

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)

αf (y) + f (y + α(x − y))− f (y) ≤ αf (x)

f (y) +
f (y + α(x − y))− f (y)

α
≤ f (x)

f (y) + (x − y)⊤∇f (y) ≤ f (x)
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Supporting hyperplanes
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Supporting hyperplanes
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• Is the mean-squared error

L =
1

N

N∑
i=1

(w⊤ϕ(xi )− yi )
2 (7)

convex in w?

• The definition itself is not always easy to use for checking convexity.
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A sufficient condition: Second derivative

• If ∇2f (x) exists and ∇2f (x) ⪰ 0 for all x , then f is convex.

• When we write ∇2f (x) ⪰ 0, we say that ∇2f (x) is positive semi-definite.

• A matrix H is positive semi-definite, if v⊤Hv ≥ 0 for every v .
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Convexity of squared distance

• The squared distance ℓ(s) = (s − s ′)2 is convex in s.

∂2ℓ

∂s2
= 2 ≥ 0 (8)
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Affine transform preserves convexity

• If f is convex, then g(x) = f (Ax + b) is also convex.

g(αx + (1− α)y) = f (α(Ax + b) + (1− α)(Ay + b)) (9)

≤ αf (Ax + b) + (1− α)f (Ay + b) = αg(x) + (1− α)g(y) (10)
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Nonnegative weighted sum of convex functions

• If f1, . . . , fk are convex, then f = β1f1 + · · ·+ βk fk is also convex when
β1, . . . , βk ≥ 0

f (αx + (1− α)y) = β1f1(αx + (1− α)y) + · · ·+ βk fk(αx + (1− α)y) (11)

≤ β1αf1(x) + β1(1− α)f (y) + · · ·+ βkαfk(x) + βk(1− α)fk(y)
(12)

= α(β1f1(x) + · · ·+ βk fk(x)) + (1− α)(β1f1(y) + · · ·+ βk fk(y))
(13)

= αf (x) + (1− α)f (y) (14)
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Convexity of MSE

• The mean-squared error is

L =
1

N

N∑
i=1

(w⊤ϕ(xi )− yi )
2. (15)

• We know that the squared distance is convex.

• Use the affine transform and nonnegative weighted sum to obtain the
mean-squared error.
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Optimality condition

If f is convex and

∇f (x∗) = 0 (16)

at x∗, then x∗ is the minimizer of f .

Proof: Suppose ∇f (x∗) = 0. For any x ,

f (x) ≥ f (x∗) + (x − x∗)⊤∇f (x∗) = f (x∗). (17)
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Optimal solution of MSE

• The mean-squared error is

L =
1

N

N∑
i=1

(w⊤ϕ(xi )− yi )
2. (18)

• The solution to ∂L
∂w = 0 is w∗ = (ΦΦ⊤)−1Φy .

• Because L is convex in w , w∗ is the global minimum.
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Convexity of log loss

• The log loss in the binary case is

L =
N∑
i=1

log

(
1 + exp(−yiw

⊤ϕ(xi ))

)
. (19)

• We just need to show ℓ(s) = log(1 + exp(−s)) is convex in s.

• Use affine transform and nonnegative weighted sum to obtain the log loss.
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∂ℓ

∂s
=

− exp(−s)

1 + exp(−s)
=

1

1 + exp(−s)
− 1 (20)

∂2ℓ

∂s2
=

1

1 + exp(−s)

exp(−s)

1 + exp(−s)
=

1

1 + exp(−s)

(
1− 1

1 + exp(−s)

)
≥ 0 (21)
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Strong convexity

• A function f is µ-strongly convex if

f (y) ≥ f (x) + (y − x)⊤∇f (x) +
µ

2
∥y − x∥2 (22)

for any x and y .

20 / 26



Quadratic lower bound
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Quadratic lower bound
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Lipschitz continuous

• A function is L-Lipschitz if

|f (x)− f (y)| ≤ L∥x − y∥ (23)

for any x and y .

• In words, the function values can only change so much for points that are close.
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Smoothness

• When the gradient of f is L-Lipschitz, then we say that f is L-smooth.

• In other words, f is L-smooth if

∥∇f (y)−∇f (x)∥ ≤ L∥y − x∥ (24)

for any x and y .

• L-smoothness also implies

f (y) ≤ f (x) + (y − x)⊤∇f (x) + L∥x − y∥22. (25)
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f (y)− f (x)− (y − x)⊤∇f (x) (26)

≤ ∇f (y)⊤(y − x)−∇f (x)⊤(y − x) (27)

≤ (∇f (y)−∇f (x))⊤(y − x) (28)

≤ ∥∇f (y)−∇f (x)∥∥y − x∥ (29)

≤ L∥y − x∥2 (30)
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Quadratic upper bound
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Quadratic upper bound
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Check your understanding

• What is the definition of convex functions?

• Can you show that a convex function is supported by hyperplanes everywhere?

• Can you show that mean-squared error is convex in w?

• Can you show that log loss is convex in w?

• How does a function being convex help us do optimization?

• What are strongly convex functions

• What are Lipschitz continuous functions?

• What are Lipschitz smooth functions?
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