Machine Learning
 Lecture 7: Optimization 1

Hao Tang

October 6, 2022

- For mean-squared error

$$
\begin{equation*}
L=\frac{1}{N} \sum_{i=1}^{N}\left(w^{\top} \phi\left(x_{i}\right)-y_{i}\right)^{2}, \tag{1}
\end{equation*}
$$

we know that

$$
\begin{equation*}
w^{*}=\left(\Phi \Phi^{\top}\right)^{-1} \Phi y \tag{2}
\end{equation*}
$$

is the solution of $\frac{\partial L}{\partial w}=0$.

- How do we know w^{*} is the optimal point?
- For log loss

$$
\begin{equation*}
L=\sum_{i=1}^{N} \log \left(1+\exp \left(-y_{i} w^{\top} \phi\left(x_{i}\right)\right)\right) \tag{3}
\end{equation*}
$$

we cannot even solve $\frac{\partial L}{\partial w}=0$.

- How do we find the optimal solution?
- Could we find an approximate solution?

Convex optimization

Optimization

- Suppose $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
- The goal is solve

$$
\begin{equation*}
\min _{x} f(x) . \tag{4}
\end{equation*}
$$

- Note $\min _{x} f(x) \leq f(y)$ for any y.
- We want to find x^{*} such that $f\left(x^{*}\right)=\min _{x} f(x)$.
- The point x^{*} is called the optimal solution or the minimizer of f.
- There might not be a minimizer or there might have many, not just one. (In most case, we are content with finding one.)

Convex functions

A function f is convex if

$$
\begin{equation*}
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y) \tag{5}
\end{equation*}
$$

for every x, y, and $0 \leq \alpha \leq 1$.

Properties of convex functions

If f is convex, then

$$
\begin{equation*}
f(x) \geq f(y)+(x-y)^{\top} \nabla f(y) \tag{6}
\end{equation*}
$$

for any x and y.

Proof:

$$
\begin{aligned}
f(\alpha x+(1-\alpha) y) & \leq \alpha f(x)+(1-\alpha) f(y) \\
\alpha f(y)+f(y+\alpha(x-y))-f(y) & \leq \alpha f(x) \\
f(y)+\frac{f(y+\alpha(x-y))-f(y)}{\alpha} & \leq f(x) \\
f(y)+(x-y)^{\top} \nabla f(y) & \leq f(x)
\end{aligned}
$$

Supporting hyperplanes

Supporting hyperplanes

- Is the mean-squared error

$$
\begin{equation*}
L=\frac{1}{N} \sum_{i=1}^{N}\left(w^{\top} \phi\left(x_{i}\right)-y_{i}\right)^{2} \tag{7}
\end{equation*}
$$

convex in w?

- The definition itself is not always easy to use for checking convexity.

A sufficient condition: Second derivative

- If $\nabla^{2} f(x)$ exists and $\nabla^{2} f(x) \succeq 0$ for all x, then f is convex.
- When we write $\nabla^{2} f(x) \succeq 0$, we say that $\nabla^{2} f(x)$ is positive semi-definite.
- A matrix H is positive semi-definite, if $v^{\top} H v \geq 0$ for every v.

Convexity of squared distance

- The squared distance $\ell(s)=\left(s-s^{\prime}\right)^{2}$ is convex in s.

$$
\begin{equation*}
\frac{\partial^{2} \ell}{\partial s^{2}}=2 \geq 0 \tag{8}
\end{equation*}
$$

Affine transform preserves convexity

- If f is convex, then $g(x)=f(A x+b)$ is also convex.

$$
\begin{align*}
g(\alpha x+(1-\alpha) y) & =f(\alpha(A x+b)+(1-\alpha)(A y+b)) \tag{9}\\
& \leq \alpha f(A x+b)+(1-\alpha) f(A y+b)=\alpha g(x)+(1-\alpha) g(y) \tag{10}
\end{align*}
$$

Nonnegative weighted sum of convex functions

- If f_{1}, \ldots, f_{k} are convex, then $f=\beta_{1} f_{1}+\cdots+\beta_{k} f_{k}$ is also convex when $\beta_{1}, \ldots, \beta_{k} \geq 0$

$$
\begin{align*}
f(\alpha x+(1-\alpha) y) & =\beta_{1} f_{1}(\alpha x+(1-\alpha) y)+\cdots+\beta_{k} f_{k}(\alpha x+(1-\alpha) y) \tag{11}\\
& \leq \beta_{1} \alpha f_{1}(x)+\beta_{1}(1-\alpha) f(y)+\cdots+\beta_{k} \alpha f_{k}(x)+\beta_{k}(1-\alpha) f_{k}(y) \tag{12}\\
& =\alpha\left(\beta_{1} f_{1}(x)+\cdots+\beta_{k} f_{k}(x)\right)+(1-\alpha)\left(\beta_{1} f_{1}(y)+\cdots+\beta_{k} f_{k}(y)\right) \tag{13}\\
& =\alpha f(x)+(1-\alpha) f(y) \tag{14}
\end{align*}
$$

Convexity of MSE

- The mean-squared error is

$$
\begin{equation*}
L=\frac{1}{N} \sum_{i=1}^{N}\left(w^{\top} \phi\left(x_{i}\right)-y_{i}\right)^{2} . \tag{15}
\end{equation*}
$$

- We know that the squared distance is convex.
- Use the affine transform and nonnegative weighted sum to obtain the mean-squared error.

Optimality condition

If f is convex and

$$
\begin{equation*}
\nabla f\left(x^{*}\right)=0 \tag{16}
\end{equation*}
$$

at x^{*}, then x^{*} is the minimizer of f.
Proof: Suppose $\nabla f\left(x^{*}\right)=0$. For any x,

$$
\begin{equation*}
f(x) \geq f\left(x^{*}\right)+\left(x-x^{*}\right)^{\top} \nabla f\left(x^{*}\right)=f\left(x^{*}\right) . \tag{17}
\end{equation*}
$$

Optimal solution of MSE

- The mean-squared error is

$$
\begin{equation*}
L=\frac{1}{N} \sum_{i=1}^{N}\left(w^{\top} \phi\left(x_{i}\right)-y_{i}\right)^{2} \tag{18}
\end{equation*}
$$

- The solution to $\frac{\partial L}{\partial w}=0$ is $w^{*}=\left(\Phi \Phi^{\top}\right)^{-1} \Phi y$.
- Because L is convex in w, w^{*} is the global minimum.

Convexity of log loss

- The log loss in the binary case is

$$
\begin{equation*}
L=\sum_{i=1}^{N} \log \left(1+\exp \left(-y_{i} w^{\top} \phi\left(x_{i}\right)\right)\right) \tag{19}
\end{equation*}
$$

- We just need to show $\ell(s)=\log (1+\exp (-s))$ is convex in s.
- Use affine transform and nonnegative weighted sum to obtain the log loss.

$$
\begin{gather*}
\frac{\partial \ell}{\partial s}=\frac{-\exp (-s)}{1+\exp (-s)}=\frac{1}{1+\exp (-s)}-1 \tag{20}\\
\frac{\partial^{2} \ell}{\partial s^{2}}=\frac{1}{1+\exp (-s)} \frac{\exp (-s)}{1+\exp (-s)}=\frac{1}{1+\exp (-s)}\left(1-\frac{1}{1+\exp (-s)}\right) \geq 0 \tag{21}
\end{gather*}
$$

Strong convexity

- A function f is μ-strongly convex if

$$
\begin{equation*}
f(y) \geq f(x)+(y-x)^{\top} \nabla f(x)+\frac{\mu}{2}\|y-x\|^{2} \tag{22}
\end{equation*}
$$

for any x and y.

Quadratic lower bound

Quadratic lower bound

Lipschitz continuous

- A function is L-Lipschitz if

$$
\begin{equation*}
|f(x)-f(y)| \leq L\|x-y\| \tag{23}
\end{equation*}
$$

for any x and y.

- In words, the function values can only change so much for points that are close.

Smoothness

- When the gradient of f is L-Lipschitz, then we say that f is L-smooth.
- In other words, f is L-smooth if

$$
\begin{equation*}
\|\nabla f(y)-\nabla f(x)\| \leq L\|y-x\| \tag{24}
\end{equation*}
$$

for any x and y.

- L-smoothness also implies

$$
\begin{equation*}
f(y) \leq f(x)+(y-x)^{\top} \nabla f(x)+L\|x-y\|_{2}^{2} \tag{25}
\end{equation*}
$$

$$
\begin{align*}
f(y) & -f(x)-(y-x)^{\top} \nabla f(x) \tag{26}\\
& \leq \nabla f(y)^{\top}(y-x)-\nabla f(x)^{\top}(y-x) \tag{27}\\
& \leq(\nabla f(y)-\nabla f(x))^{\top}(y-x) \tag{28}\\
& \leq\|\nabla f(y)-\nabla f(x)\|\|y-x\| \tag{29}\\
& \leq L\|y-x\|^{2} \tag{30}
\end{align*}
$$

Quadratic upper bound

Quadratic upper bound

Check your understanding

- What is the definition of convex functions?
- Can you show that a convex function is supported by hyperplanes everywhere?
- Can you show that mean-squared error is convex in w ?
- Can you show that log loss is convex in w ?
- How does a function being convex help us do optimization?
- What are strongly convex functions
- What are Lipschitz continuous functions?
- What are Lipschitz smooth functions?

