
Machine Learning
Lecture 8: Optimization 2

Hao Tang

October 10, 2022

1 / 21



• For log loss

L =
N∑
i=1

log

(
1 + exp(−yiw

⊤ϕ(xi ))

)
(1)

we cannot even solve ∂L
∂w = 0.

• How do we find the optimal solution?

• Could we find an approximate solution?
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Approximate solutions in optimization

• We say that x̂ is an approximate solution if, for a given ϵ > 0,

f (x̂)− f (x∗) < ϵ. (2)

• Note that it is close in function value, not close in the input.
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Gradient descent

• Gradient descent is an iterative algorithm, consisting of the steps

wt+1 = wt − ηt∇L(wt). (3)

• The variable ηt > 0 is called the step size, and can depend on t.
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Gradient descent
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Approximate solutions for iterative algorithms

• An iterative algorithm creates a sequence x1, . . . , xt .

• How many updates do we need to achieve an approximate solution?

• Given ϵ > 0, how large does t needs to be to achieve

f (xt)− f (x∗) < ϵ? (4)

• We want to express ϵ as a function of t.
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Potential results

• Sublinear

– f (xt)− f (x∗) ≤ c

t2

– ϵ = O
(

1
t2

)
or t = O( 1√

ϵ
)

• Linear

– f (xt)− f (x∗) ≤ cr t for 0 < r < 1

– ϵ = O (2−t) or t = O(log 1
ϵ )

• Quadratic

– f (xt)− f (x∗) ≤ cr2
t

for 0 < r < 1

– ϵ = O
(
22

−t
)
or t = O(log log 1

ϵ )
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Implications of smoothness

• Based on the definition of smoothness and gradient update,

f (xt) ≤ f (xt−1) + (xt − xt−1)
⊤∇f (xt−1) + L∥xt − xt−1∥22 (5)

= f (xt−1)− ηt∥∇f (xt−1)∥22 + Lη2t ∥∇f (xt−1)∥22 (6)

= f (xt−1)− ηt(1− Lηt)∥∇f (xt−1)∥22 (7)

• In other words, f (xt−1)− f (xt) ≥ ηt(1− Lηt)∥∇f (xt−1)∥22.

• The expression ηt(1− Lηt) has a maximum 1
4L when ηt =

1
2L , and reaches 0 when

ηt =
1
L .

• Choosing any ηt ∈
[

1
2L ,

1
L

)
is able to stricly decrease the objective.

• For simplicity, we choose ηt =
1
2L for the rest of the analysis.
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Implications of strong convexity

• Based on the definition of strong convexity,

f (x) ≥ f (y) + (x − y)⊤∇f (y) +
µ

2
∥x − y∥22. (8)

• The best x on the right-hand side is x = y − 1
µ∇f (y).

• We have f (x) ≥ f (y)− 1
2µ∥∇f (y)∥22, for any x and y .

• In particular, f (y)− f (x∗) ≤ 1
2µ∥∇f (y)∥22.

• In words, the gradient norm at any given point tells us how far we are from the
optimal value.
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Guarentee of gradient descent

• If we do gradient descent on a L-smooth and µ-strongly convex function,

f (xt)− f (x∗) ≤ f (xt−1)− f (x∗)− 1

4L
∥∇f (xt−1)∥22 (9)

≤ f (xt−1)− f (x∗) +
µ

2L
(f (x∗)− f (xt−1)) (10)

=
(
1− µ

2L

)
(f (xt−1)− f (x∗)) (11)

=
(
1− µ

2L

)t
(f (x0)− f (x∗)) (12)

• The convergence rate is linear.
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Guarentee of gradient descent

• If we do gradient descent on a L-smooth convex function,

f (xt)− f (x∗) ≤ ∥x0 − x∗∥22
2ηt

(13)

for η ≤ 1/L.

• The convergence rate is sublinear.

• The proof is beyond the scope of this course.
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Back to log loss

• The log loss in the binary case

L =
N∑
i=1

log

(
1 + exp(−yiw

⊤ϕ(xi ))

)
. (14)

• We have shown that L is convex in w .
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Gradient descent on log loss

∂L

∂w
=

N∑
i=1

exp(−yiw
⊤ϕ(xi ))

1 + exp(−yiw⊤ϕ(xi ))
(−yiϕ(xi )) (15)

=
N∑
i=1

(
1− 1

1 + exp(−yiw⊤ϕ(xi ))

)
(−yiϕ(xi )) (16)

=
N∑
i=1

(1− p(yi |xi )) (−yiϕ(xi )) (17)
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The size of the data set

• For mean-squared error, recall that the solution for ∂L
∂w = 0 is w∗ = (ΦΦ⊤)−1Φy .

• Computing (ΦΦ⊤)−1Φy takes O(N3).

• For gradient descent on log loss, computing the gradient itself takes O(N).
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Stochastic gradient descent

1. Sample xt , yt from a data set S .

2. wt+1 = wt − ηt∇ℓ(wt ; xt , yt)

– Per sample L2 loss ℓ(w ; x , y) = (w⊤ϕ(x)− y)2

– Per sample log loss ℓ(w ; x , y) = log(1 + exp(−yw⊤ϕ(x)))

3. Go to 1 until the solution is satisfactory.
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Stochastic gradient descent

• ∇ℓ(wt ; xt , yt) is now random, because xt and yt is random.

• The expectation

Ex ,y∼U(S)[∇ℓ(w ; x , y)] = ∇L(w) (18)

where U(S) is the uniform distribution over the samples in S .
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Guarantee for stochastic gradient descent

• If we do SGD on an γ-smooth convex function,

Ex ,y∼U(S)[L(w̄t)] ≤ L(w∗) +
∥w0 − w∗∥22

2ηt
+

tσ2

2
(19)

where η ≤ 1/γ.

• σ2 ≥ Ex ,y∼U(S)

[
∥∇ℓ(wt ; x , y)∥2

]
−

∥∥∥∥∥Ex ,y∼U(S)[∇ℓ(wt ; x , y)]

∥∥∥∥∥
2

2

for any t

• w̄t =
w1+···+wt

t

• The proof is beyond the scope of this course.

• The runtime is O(t), independent of the data set size N!
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Subgradient

• A subgradient at x is a vector g that satisfies

f (y) ≥ f (x) + (y − x)⊤g (20)

for any y, and the set of subgradients at x is denoted as ∂f (x).

• Obviously, ∇f (x) ∈ ∂f (x), if ∇f (x) exists.

• Convergence theorems can be ported to subgradient descent.
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Subgradients for absolute values

|x |
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Examples

• f (x) = x2 is 2-strongly convex.

• f (x) = |x | is convex and 1-Lipschitz.

• This also implies that mean-squared error is strongly convex function.

• f (x) = ∥x∥22 is 2-strongly convex.

• g(x) = f (x) + ∥x∥22 is strongly convex if f is convex.
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Check your understanding

• What does it mean to get an approximate solution for an optimization problem?

• What is gradient descent?

• What is stochastic gradient descent?

• What does it mean to have an approximate solution for an iterative algorithm?

• What are sublinear, linear, quadratic convergence?
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