Machine Learning
Lecture 8: Optimization 2

Hao Tang

October 10, 2022
• For log loss

\[
L = \sum_{i=1}^{N} \log \left(1 + \exp(-y_i w^T \phi(x_i)) \right)
\]

we cannot even solve \(\frac{\partial L}{\partial w} = 0 \).

• How do we find the optimal solution?

• Could we find an approximate solution?
Approximate solutions in optimization

• We say that \hat{x} is an approximate solution if, for a given $\epsilon > 0$,

$$f(\hat{x}) - f(x^*) < \epsilon.$$ \hspace{1cm} (2)

• Note that it is close in function value, not close in the input.
Gradient descent

• Gradient descent is an iterative algorithm, consisting of the steps

\[w_{t+1} = w_t - \eta_t \nabla L(w_t). \]

(3)

• The variable \(\eta_t > 0 \) is called the step size, and can depend on \(t \).
Gradient descent

\[L(w) \]
Gradient descent
Gradient descent
Gradient descent
Gradient descent
Approximate solutions for iterative algorithms

- An iterative algorithm creates a sequence x_1, \ldots, x_t.

- How many updates do we need to achieve an approximate solution?

- Given $\epsilon > 0$, how large does t needs to be to achieve

$$f(x_t) - f(x^*) < \epsilon?$$

- We want to express ϵ as a function of t.
Potential results

• Sublinear
 \[f(x_t) - f(x^*) \leq \frac{c}{t^2} \]

• Linear
 \[f(x_t) - f(x^*) \leq cr^t \text{ for } 0 < r < 1 \]

• Quadratic
 \[f(x_t) - f(x^*) \leq cr^{2t} \text{ for } 0 < r < 1 \]
Potential results

• **Sublinear**
 \[f(x_t) - f(x^*) \leq \frac{c}{t^2} \]
 \[\epsilon = O\left(\frac{1}{t^2}\right) \text{ or } t = O\left(\frac{1}{\sqrt{\epsilon}}\right) \]

• **Linear**
 \[f(x_t) - f(x^*) \leq cr^t \text{ for } 0 < r < 1 \]
 \[\epsilon = O\left(2^{-t}\right) \text{ or } t = O\left(\log \frac{1}{\epsilon}\right) \]

• **Quadratic**
 \[f(x_t) - f(x^*) \leq cr^{2t} \text{ for } 0 < r < 1 \]
 \[\epsilon = O\left(2^{2^{-t}}\right) \text{ or } t = O\left(\log \log \frac{1}{\epsilon}\right) \]
Implications of smoothness

• Based on the definition of smoothness and gradient update,

\[f(x_t) \leq f(x_{t-1}) + (x_t - x_{t-1})^\top \nabla f(x_{t-1}) + L\|x_t - x_{t-1}\|^2_2 \]

\[= f(x_{t-1}) - \eta_t \|\nabla f(x_{t-1})\|^2_2 + L\eta_t^2 \|\nabla f(x_{t-1})\|^2_2 \]

\[= f(x_{t-1}) - \eta_t(1 - L\eta_t) \|\nabla f(x_{t-1})\|^2_2 \]

(5) (6) (7)

• In other words, \(f(x_{t-1}) - f(x_t) \geq \eta_t(1 - L\eta_t) \|\nabla f(x_{t-1})\|^2_2 \).

• The expression \(\eta_t(1 - L\eta_t) \) has a maximum \(\frac{1}{4L} \) when \(\eta_t = \frac{1}{2L} \), and reaches 0 when \(\eta_t = \frac{1}{L} \).

• Choosing any \(\eta_t \in \left[\frac{1}{2L}, \frac{1}{L} \right] \) is able to strictly decrease the objective.

• For simplicity, we choose \(\eta_t = \frac{1}{2L} \) for the rest of the analysis.
Implications of strong convexity

• Based on the definition of strong convexity,

\[f(x) \geq f(y) + (x - y)^\top \nabla f(y) + \frac{\mu}{2} \|x - y\|_2^2. \] (8)

• The best \(x \) on the right-hand side is \(x = y - \frac{1}{\mu} \nabla f(y) \).

• We have \(f(x) \geq f(y) - \frac{1}{2\mu} \|\nabla f(y)\|_2^2 \), for any \(x \) and \(y \).

• In particular, \(f(y) - f(x^*) \leq \frac{1}{2\mu} \|\nabla f(y)\|_2^2 \).

• In words, the gradient norm at any given point tells us how far we are from the optimal value.
Guarentee of gradient descent

• If we do gradient descent on a L-smooth and μ-strongly convex function,

$$f(x_t) - f(x^*) \leq f(x_{t-1}) - f(x^*) - \frac{1}{4L} \|\nabla f(x_{t-1})\|_2^2$$

(9)

$$\leq f(x_{t-1}) - f(x^*) + \frac{\mu}{2L} (f(x^*) - f(x_{t-1}))$$

(10)

$$= \left(1 - \frac{\mu}{2L}\right) (f(x_{t-1}) - f(x^*))$$

(11)

$$= \left(1 - \frac{\mu}{2L}\right)^t (f(x_0) - f(x^*))$$

(12)

• The convergence rate is linear.
Guarentee of gradient descent

- If we do gradient descent on a L-smooth convex function,

$$f(x_t) - f(x^*) \leq \frac{\|x_0 - x^*\|_2^2}{2\eta t} \tag{13}$$

for $\eta \leq 1/L$.

- The convergence rate is sublinear.

- The proof is beyond the scope of this course.
Back to log loss

• The log loss in the binary case

\[L = \sum_{i=1}^{N} \log \left(1 + \exp(-y_i w^T \phi(x_i)) \right). \]

(14)

• We have shown that \(L \) is convex in \(w \).
Gradient descent on log loss

\[
\frac{\partial L}{\partial w} = \sum_{i=1}^{N} \frac{\exp(-y_i w^T \phi(x_i))}{1 + \exp(-y_i w^T \phi(x_i))} (-y_i \phi(x_i)) \\
= \sum_{i=1}^{N} \left(1 - \frac{1}{1 + \exp(-y_i w^T \phi(x_i))}\right) (-y_i \phi(x_i)) \\
= \sum_{i=1}^{N} (1 - p(y_i|x_i)) (-y_i \phi(x_i))
\]
The size of the data set

• For mean-squared error, recall that the solution for $\frac{\partial L}{\partial w} = 0$ is $w^* = (\Phi \Phi^\top)^{-1} \Phi y$.

• Computing $(\Phi \Phi^\top)^{-1} \Phi y$ takes $O(N^3)$.

• For gradient descent on log loss, computing the gradient itself takes $O(N)$.

Stochastic gradient descent

1. Sample x_t, y_t from a data set S.

2. $w_{t+1} = w_t - \eta_t \nabla \ell(w_t; x_t, y_t)$

 - Per sample L_2 loss $\ell(w; x, y) = (w^T \phi(x) - y)^2$

 - Per sample log loss $\ell(w; x, y) = \log(1 + \exp(-yw^T \phi(x)))$

3. Go to 1 until the solution is satisfactory.
Stochastic gradient descent

• \(\nabla \ell(w_t; x_t, y_t) \) is now random, because \(x_t \) and \(y_t \) is random.

• The expectation

\[
E_{x, y \sim U(S)}[\nabla \ell(w; x, y)] = \nabla L(w) \tag{18}
\]

where \(U(S) \) is the uniform distribution over the samples in \(S \).
Guarantee for stochastic gradient descent

• If we do SGD on an γ-smooth convex function,

$$\mathbb{E}_{x,y \sim U(S)}[L(\bar{w}_t)] \leq L(w^*) + \frac{\|w_0 - w^*\|^2}{2\eta t} + \frac{t\sigma^2}{2}$$ \hspace{1cm} (19)

where $\eta \leq 1/\gamma$.

• $\sigma^2 \geq \mathbb{E}_{x,y \sim U(S)} \left[\|\nabla \ell(w_t; x, y)\|^2 \right] - \left\| \mathbb{E}_{x,y \sim U(S)} [\nabla \ell(w_t; x, y)] \right\|^2$ for any t

• $\bar{w}_t = \frac{w_1 + \cdots + w_t}{t}$

• The proof is beyond the scope of this course.

• The runtime is $O(t)$, independent of the data set size N!
A subgradient at x is a vector g that satisfies

$$f(y) \geq f(x) + (y - x)^\top g$$

for any y, and the set of subgradients at x is denoted as $\partial f(x)$.

Obviously, $\nabla f(x) \in \partial f(x)$, if $\nabla f(x)$ exists.

Convergence theorems can be ported to subgradient descent.
Subgradients for absolute values

$$|x|$$
Subgradients for absolute values

\[|x| \]
Subgradients for absolute values

\[|x| \]
Subgradients for absolute values
Examples

- $f(x) = x^2$ is 2-strongly convex.
- $f(x) = |x|$ is convex and 1-Lipschitz.
- This also implies that mean-squared error is strongly convex function.
- $f(x) = \|x\|_2^2$ is 2-strongly convex.
- $g(x) = f(x) + \|x\|_2^2$ is strongly convex if f is convex.
Check your understanding

• What does it mean to get an approximate solution for an optimization problem?

• What is gradient descent?

• What is stochastic gradient descent?

• What does it mean to have an approximate solution for an iterative algorithm?

• What are sublinear, linear, quadratic convergence?