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® For log loss

N

L=> log (1 + eXP(—}/iWT¢(Xi))> (1)

i=1

we cannot even solve % =0.

® How do we find the optimal solution?

® Could we find an approximate solution?
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Approximate solutions in optimization

® \We say that X is an approximate solution if, for a given € > 0,

f(x)—f(x*) <e. (2)

® Note that it is close in function value, not close in the input.
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Gradient descent

® Gradient descent is an iterative algorithm, consisting of the steps

Wiyl = We — 'I’]tVL(Wt) (3)

® The variable 7, > 0 is called the step size, and can depend on t.
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Gradient descent
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Approximate solutions for iterative algorithms

An iterative algorithm creates a sequence xi, ..., x;.
How many updates do we need to achieve an approximate solution?

Given € > 0, how large does t needs to be to achieve

f(xe) — f(x*) <e€?

We want to express € as a function of t.
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Potential results

® Sublinear
C
- f(xe) — f(x") < 2
® |inear

- f(x) = f(x*)<ecrffor0O<r<1

® Quadratic
~ fx) —f(x*)<cr? for0<r<1
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Potential results

® Sublinear
- ()~ ) <
- e:O(t%) ort:O(ﬁ)

c
+2

® Linear
- f(x) = f(x*)<ecrffor0<r<1
- e=0(2" ort=0(log?)

® Quadratic

- f(x) = f(x*)<cr? for0<r<1
-e=0 (22_t> or t = O(loglog 1)
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Implications of smoothness

Based on the definition of smoothness and gradient update,

Fxe) < Fxe—1) + (e — xe—1) T VF(xe-1) + Llxe — xe—1 13 (5)
= f(xe—1) = nel VFOa-1) 15+ LnF [V (xe—1)[I5 (6)
= f(xe-1) = ne(1 = Lne) [V F(xe-1) 3 (7)

In other words, f(x;—1) — f(xt) > 1:(1 — Ln:) || V£ (xe—1)][3-

The expression 7;(1 — L1;) has a maximum 2; when 7, = 3, and reaches 0 when

= l-
Choosing any n; € [i, %) is able to stricly decrease the objective.

For simplicity, we choose n; = i for the rest of the analysis.
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Implications of strong convexity

Based on the definition of strong convexity,
F() 2 F(0) + (x =) VF() + Slx = v I3
The best x on the right-hand side is x = y — in(y).
We have f(x) > f(y) — iHVf(y)H% for any x and y.
In particular, f(y) — f(x*) < iHVf(y)H%

In words, the gradient norm at any given point tells us how far we are from the
optimal value.
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Guarentee of gradient descent

® |f we do gradient descent on a L-smooth and pu-strongly convex function,

f(xe) —f(x*)<f

® The convergence rate is linear.

(xe-1) ~ Fx) — 7 IV Flxe 1) 3
(xe-1) = F(X*) + 5 (F(x*) = F(xe-1))

(9)
(10)
(11)
(12)
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Guarentee of gradient descent

® |f we do gradient descent on a L-smooth convex function,

_ lro—x'I3

floxe) — () < 705

forn <1/L.
® The convergence rate is sublinear.

® The proof is beyond the scope of this course.

(13)
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Back to log loss

® The log loss in the binary case

N
L= log (1 + eXp(_YiWT¢(Xi))> : (14)

i=1

® \We have shown that L is convex in w.
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Gradient descent on log loss

N exp(— ‘WT X
% _ Z p( Yi ¢( I)) (—y;<b(X;)) (15)

ow 1+ exp(—yiw ¢(x;))

N
1
- Zl (1 1+ exp(— y,-WT¢(x,-))> (=yie(xi) (16)
N
Rt

p(yilxi)) (—=yid(xi)) (17)
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The size of the data set

® For mean-squared error, recall that the solution for gTLv =0is w* = (¢dT) 1oy,
e Computing (®® ")~ 1dy takes O(N3).

® For gradient descent on log loss, computing the gradient itself takes O(N).
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Stochastic gradient descent

1. Sample x;, y; from a data set S.

2. wepr = we — eV We xe, yt)
— Per sample L loss £(w; x,y) = (w " ¢(x) — y)?

— Per sample log loss /(w; x,y) = log(1 + exp(—yw " ¢(x)))

3. Go to 1 until the solution is satisfactory.
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Stochastic gradient descent

® V/(wy; xt, yt) is now random, because x; and y; is random.

® The expectation
EX,yNU(S)[vg(W;Xuy)] = VL(W) (18)

where U(S) is the uniform distribution over the samples in S.
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Guarantee for stochastic gradient descent

If we do SGD on an ~-smooth convex function,

n * lwo — w*|3  to?
BeymtlL(m)] < Lw) + =25 2 4 5 (19)
where n <'1/7.
2

IVe(we; x, y)|I? for any t

2

o? > IEx,yNU(S) Ex,wa(S)[vg(Wt;X7y)]

oo Wit 4w
Wi = t

The proof is beyond the scope of this course.

The runtime is O(t), independent of the data set size N!
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Subgradient

e A subgradient at x is a vector g that satisfies
fly) = f(x)+(y—x)'¢g (20)
for any y, and the set of subgradients at x is denoted as 9f(x).
® Obviously, Vf(x) € 0f(x), if Vf(x) exists.

e Convergence theorems can be ported to subgradient descent.
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Subgradients for absolute values

x|
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Subgradients for absolute values

x|
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Subgradients for absolute values

x|
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Subgradients for absolute values

x|
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Examples

f(x) = x? is 2-strongly convex.

f(x) = |x| is convex and 1-Lipschitz.

This also implies that mean-squared error is strongly convex function.

f(x) = ||x]||3 is 2-strongly convex.

g(x) = f(x) + ||x||3 is strongly convex if f is convex.
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Check your understanding

What does it mean to get an approximate solution for an optimization problem?
What is gradient descent?

What is stochastic gradient descent?

What does it mean to have an approximate solution for an iterative algorithm?

What are sublinear, linear, quadratic convergence?
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