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Unconstrained optimization

min
w

L(w) (1)
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An example problem with constraints

• The problem

min
w

L(w)

s.t. ∥w∥2 ≤ 1 (2)

is an example of a contrained optimization problem.

• The inequality ∥w∥2 ≤ 1 is called a constraint.

• Solutions that satisfy the constraints are called feasible solutions.
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Representing constraints

• We can write the optimization problem as

min
w

L(w) + V−(∥w∥2 − 1), (3)

where

V−(s) =

{
0 if s ≤ 0

∞ if s > 0
. (4)

• This does not change anything; both problems are equally hard (or easy) to solve.
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Soften the constraints

• We can approximate

min
w

L(w) + V−(∥w∥2 − 1) (5)

with

min
w

L(w) + λ(∥w∥2 − 1), (6)

for some λ ≥ 0.

• Note that λs ≤ V−(s) for all s.
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Soften the constraints
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Lagrangian

• In general, if you have a optimization problem

min
w

L(w)

s.t. h(w) ≤ 0 (7)

the Lagrangian is defined as

L(w) + λh(w) (8)

for λ ≥ 0.

• The value λ is called the Lagrange multiplier.
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Dual function

• If w̃ is a feasible solution, meaning that h(w̃) ≤ 0, then

L(w̃) + λh(w̃) ≤ L(w̃). (9)

• There should be a lowest possible left-hand side,

min
w

L(w) + λh(w) ≤ L(w̃) + λh(w̃) ≤ L(w̃). (10)

• We call

g(λ) = min
w

L(w) + λh(w) (11)

the dual function.
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Dual function

• We can see that for any λ,

g(λ) ≤ L(w∗) (12)

where w∗ is the optimal solution for minw L(w) subject to h(w) ≤ 0.

• The proof is the same argument that

g(λ) = min
w

L(w) + λh(w) ≤ L(w∗) + λh(w∗) ≤ L(w∗). (13)

• In other words, the dual function always has a lower value than the optimal value.
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Dual problem

• Since g(λ) ≤ L(w∗) for any λ,

g(λ∗) ≤ L(w∗) (14)

where λ∗ = argmaxλ≥0 g(λ).

• The problem

max
λ

g(λ)

s.t. λ ≥ 0 (15)

is called the dual problem.
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Dual problem

• The dual problem can be written compactly as

max
λ≥0

min
x

L(x) + λh(x). (16)

• For every feasible solution x̂ , h(x̂) ≤ 0.

• For every feasible solusion x̂ , to make L(x̂) + λh(x̂) as large as possible, λ has to
be zero.

• For the infeasible solusions, λ → ∞.
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A unigram model

Row, row, row your boat, gently down the stream
Merrily, merrily, merrily, merrily, life is but a dream

• There are 18 words.

• Intuitively,

p(row) =
3

18
p(merrily) =

4

18
p(is) =

1

18
(17)
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A unigram model

• There are 13 unique words.

• We refer to the set of unique words V = {row, your, boat, gently, down, the,
stream,merrily, life, is, but, a, dream} as the vocabulary.

• We assign each word v a probability βv .

• The probability of a word is

p(w) =
∏
v∈V

β1v=w
v . (18)
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A unigram model

• We assume that each word is independent of others.

• This assumption is obviously wrong, but can go really far.

• The likelihood of β given the data is

log p(w1, . . . ,wN) = log
N∏
i=1

p(wi ) = log
N∏
i=1

∏
v∈V

β
1v=wi
v . (19)

• Since β is a probability vector, we have the assumption∑
v∈V

βv = 1. (20)
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A unigram model

• We arrive at the optimization problem

min
β

−
N∑
i=1

∑
v∈V

1v=wi log βv

s.t.
∑
v∈V

βv = 1 (21)

• Its Lagrangian is

F = −
N∑
i=1

∑
v∈V

1v=wi log βv + λ

(∑
v∈V

βv − 1

)
. (22)
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A unigram model

• Solving the optimality condition gives

∂F

∂βk
=

N∑
i=1

1k=wi

1

βk
− λ = 0 =⇒ βk =

1

λ

N∑
i=1

1k=wi
. (23)

• The dual problem is

max
λ≥0

−
N∑
i=1

∑
v∈V

1v=wi log
1

λ

N∑
j=1

1v=wj + λ

(∑
v∈V

1

λ

N∑
i=1

1v=wi − 1

)
. (24)
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A unigram model

∑
v∈V

βv =
∑
v∈V

1

λ

N∑
i=1

1v=wi = 1 =⇒ λ =
∑
v∈V

N∑
i=1

1v=wi = N (25)

βk =

∑N
i=1 1k=wi∑

v∈V
∑N

i=1 1v=wi

=
1

N

N∑
i=1

1k=wi
(26)
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Projection

v

u

θ

∥u∥ cos θ = ∥u∥ u⊤v

∥u∥∥v∥
=

u⊤v

∥v∥
(27)

18 / 25



Projection

• The projection of x onto w is x⊤w
∥w∥ .

• If we have N data points {x1, . . . , xN}, then the sum of the (squared) projection is

N∑
i=1

(
x⊤i w

∥w∥

)2

=
w⊤XX⊤w

w⊤w
. (28)

• The sum of squared projection can be seen as the spread of the data.

19 / 25



Maximal projection
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Maximal projection

• We want to find the maximum direction to project.

• The optimization problem is

max
w

w⊤XX⊤w

w⊤w
. (29)
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Maximal projection

• The problem is scale invariant.

(aw)⊤XX⊤(aw)

(aw)⊤(aw)
=

w⊤XX⊤w

w⊤w
. (30)

• The problem is equivalent to

max
w

w⊤XX⊤w s.t. ∥w∥2 = 1. (31)
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Maximal projection

• The Lagrangian is

F = w⊤XX⊤w + λ(1− ∥w∥2). (32)

• Finding the optimal solution gives

∂F

∂w
= (XX⊤ + XX⊤)w − 2λw = 0 =⇒ XX⊤w = λw . (33)

• It turns out that λ is an eigenvalue, and w an eigenvector.
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Maximal projection

• Plugging the solution back to the objective,

w⊤XX⊤w

w⊤w
=

λw⊤w

w⊤w
= λ (34)

• Since the goal is to find the maximal projection, this is now equivalent to finding
the largest eigenvalue of XX⊤.
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Maximal projection

• The term

w⊤XX⊤w

w⊤w
(35)

is called the Rayleigh quotient.

• The optimal w is called the first principal component.

• We will learn more about this when we talk about principal component analysis.
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