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Unconstrained optimization

min L(w) (1)
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An example problem with constraints

® The problem

min L(w)
st wl2<1 2)

is an example of a contrained optimization problem.
® The inequality ||w||?> < 1 is called a constraint.

® Solutions that satisfy the constraints are called feasible solutions.
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Representing constraints

® \We can write the optimization problem as

min - L(w) + V_([|w]? - 1), (3)
where
SR ®

® This does not change anything; both problems are equally hard (or easy) to solve.
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Soften the constraints

® \We can approximate
min  L(w)+ V_([w]?® - 1) (5)
with
min  L(w) +A(|wlf* — 1), (6)

for some A > 0.

® Note that A\s < V_(s) for all s.
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Lagrangian

® In general, if you have a optimization problem

mmi/n L(w)
s.t. h(w) <0 (7)
the Lagrangian is defined as
L(w) + Ah(w) (8)

for A > 0.
® The value X is called the Lagrange multiplier.
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Dual function

® If W is a feasible solution, meaning that h(w) < 0, then
L(W) + Ah(w) < L(w). (9)
® There should be a lowest possible left-hand side,
min L(w) + Ah(w) < L(w) + Ah(W) < L(W). (10)
® We call
g(A) = min L(w) + Ah(w) (11)

the dual function.
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Dual function

® \We can see that for any ),
g(A) < L(w") (12)

where w* is the optimal solution for min,, L(w) subject to h(w) < 0.

® The proof is the same argument that

g(\) = min L(w) + Mh(w) < L(w") + Ah(w") < L(w"). (13)

® |n other words, the dual function always has a lower value than the optimal value.
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Dual problem

® Since g(A\) < L(w™*) for any A,

g(\") < L(w?) (14)
where \* = argmax,~q g(A).
® The problem
max g(\)
s.t. A>0 (15)

is called the dual problem.
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Dual problem

The dual problem can be written compactly as
max min L(x) + Ah(x). (16)
For every feasible solution X, h(X) < 0.

For every feasible solusion X, to make L(X) 4+ Ah(X) as large as possible, A has to
be zero.

For the infeasible solusions, A\ — oo.
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A unigram model
Row, row, row your boat, gently down the stream
Merrily, merrily, merrily, merrily, life is but a dream

® There are 18 words.

® Intuitively,

p(row) = — p(merrily) = s plis) = —

(17)
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A unigram model

There are 13 unique words.

We refer to the set of unique words V = {row, your, boat, gently, down, the,
stream, merrily, life, is, but, a, dream} as the vocabulary.

We assign each word v a probability 3, .

The probability of a word is

p(w) =[] By

veV

(18)
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A unigram model
We assume that each word is independent of others.
This assumption is obviously wrong, but can go really far.

The likelihood of 3 given the data is

N N

log p(wa,...,wy) = Iong(W;) = IogH H B

i=1 i=1lveVv

Since [ is a probability vector, we have the assumption

Zﬂvzl-

veV

(19)

(20)
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A unigram model

® \We arrive at the optimization problem

N
mﬁin — Z Z 1y—w, log By

i=1veV

st. > By=1 (21)

veV

® |ts Lagrangian is

N
F:_Zzlv—wilogﬁv+>\<26V_l>' (22)

i=1veV veV
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A unigram model

® Solving the optimality condition gives

N
1
(9/3k Z]lk WG A=0 = 5k:XZ]1k=w,~ (23)
i—1 i—1

® The dual problem is

max ZZHVWIog)\ZHVWJ—i—)\<2 ZI[VW,—>. (24)

i=1veVv veV i=1
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A unigram model

N N
D Bl D M R R D) Dy MR

veV veV i=1 veV i=1

N
— 1= I [ :H. —w 2
B Sy 1, N ,Z_; k=w, (26)
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Projection

UTV UTV

lulllivil— liv]

(27)

lul[ cos & = |[u]
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Projection

® The projection of x onto w is 5—7.

e If we have N data points {x1,...,xy}, then the sum of the (squared) projection is

(28)

® The sum of squared projection can be seen as the spread of the data.
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Maximal projection

® \We want to find the maximum direction to project.

® The optimization problem is

wT XX Tw
max ———.

w WTW

(29)
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Maximal projection

® The problem is scale invariant.

w) T XX T (aw w! XX Tw
(a(gw)T(av(vé; - wliw (30)

® The problem is equivalent to

maxw ' XX w st |w|>=1. (31)

w
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Maximal projection

® The Lagrangian is

F=w"XX"w+A1—|w|?).

® Finding the optimal solution gives

oF

— =(XXT+XXNw—22w =0 = XX'w = )w.

ow

® |t turns out that A is an eigenvalue, and w an eigenvector.

(33)
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Maximal projection

® Plugging the solution back to the objective,

w T XX Tw B Aw T w

wiw  wlw

— ) (34)

® Since the goal is to find the maximal projection, this is now equivalent to finding
the largest eigenvalue of XX .
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Maximal projection

® The term

w! XX Tw

w!w

(35)
is called the Rayleigh quotient.
® The optimal w is called the first principal component.

® We will learn more about this when we talk about principal component analysis.
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