Machine Learning
 Lecture 9: Optimization 3

Hao Tang

December 9, 2022

Unconstrained optimization

$$
\min _{w} L(w)
$$

An example problem with constraints

- The problem

$$
\begin{array}{ll}
\min _{w} & L(w) \\
\text { s.t. } & \|w\|^{2} \leq 1 \tag{2}
\end{array}
$$

is an example of a contrained optimization problem.

- The inequality $\|w\|^{2} \leq 1$ is called a constraint.
- Solutions that satisfy the constraints are called feasible solutions.

Representing constraints

- We can write the optimization problem as

$$
\begin{equation*}
\min _{w} \quad L(w)+V_{-}\left(\|w\|^{2}-1\right), \tag{3}
\end{equation*}
$$

where

$$
V_{-}(s)=\left\{\begin{array}{ll}
0 & \text { if } s \leq 0 \tag{4}\\
\infty & \text { if } s>0
\end{array} .\right.
$$

- This does not change anything; both problems are equally hard (or easy) to solve.

Soften the constraints

- We can approximate

$$
\begin{equation*}
\min _{w} \quad L(w)+V_{-}\left(\|w\|^{2}-1\right) \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
\min _{w} \quad L(w)+\lambda\left(\|w\|^{2}-1\right), \tag{6}
\end{equation*}
$$

for some $\lambda \geq 0$.

- Note that $\lambda s \leq V_{-}(s)$ for all s.

Soften the constraints

Lagrangian

- In general, if you have a optimization problem

$$
\begin{array}{ll}
\min _{w} & L(w) \\
\text { s.t. } & h(w) \leq 0 \tag{7}
\end{array}
$$

the Lagrangian is defined as

$$
\begin{equation*}
L(w)+\lambda h(w) \tag{8}
\end{equation*}
$$

for $\lambda \geq 0$.

- The value λ is called the Lagrange multiplier.

Dual function

- If \tilde{w} is a feasible solution, meaning that $h(\tilde{w}) \leq 0$, then

$$
\begin{equation*}
L(\tilde{w})+\lambda h(\tilde{w}) \leq L(\tilde{w}) . \tag{9}
\end{equation*}
$$

- There should be a lowest possible left-hand side,

$$
\begin{equation*}
\min _{w} L(w)+\lambda h(w) \leq L(\tilde{w})+\lambda h(\tilde{w}) \leq L(\tilde{w}) . \tag{10}
\end{equation*}
$$

- We call

$$
\begin{equation*}
g(\lambda)=\min _{w} L(w)+\lambda h(w) \tag{11}
\end{equation*}
$$

the dual function.

Dual function

- We can see that for any λ,

$$
\begin{equation*}
g(\lambda) \leq L\left(w^{*}\right) \tag{12}
\end{equation*}
$$

where w^{*} is the optimal solution for $\min _{w} L(w)$ subject to $h(w) \leq 0$.

- The proof is the same argument that

$$
\begin{equation*}
g(\lambda)=\min _{w} L(w)+\lambda h(w) \leq L\left(w^{*}\right)+\lambda h\left(w^{*}\right) \leq L\left(w^{*}\right) . \tag{13}
\end{equation*}
$$

- In other words, the dual function always has a lower value than the optimal value.

Dual problem

- Since $g(\lambda) \leq L\left(w^{*}\right)$ for any λ,

$$
\begin{equation*}
g\left(\lambda^{*}\right) \leq L\left(w^{*}\right) \tag{14}
\end{equation*}
$$

where $\lambda^{*}=\operatorname{argmax}_{\lambda \geq 0} g(\lambda)$.

- The problem

$$
\begin{array}{cl}
\max _{\lambda} & g(\lambda) \\
\text { s.t. } & \lambda \geq 0 \tag{15}
\end{array}
$$

is called the dual problem.

Dual problem

- The dual problem can be written compactly as

$$
\begin{equation*}
\max _{\lambda \geq 0} \min _{x} L(x)+\lambda h(x) . \tag{16}
\end{equation*}
$$

- For every feasible solution $\hat{x}, h(\hat{x}) \leq 0$.
- For every feasible solusion \hat{x}, to make $L(\hat{x})+\lambda h(\hat{x})$ as large as possible, λ has to be zero.
- For the infeasible solusions, $\lambda \rightarrow \infty$.

A unigram model

Row, row, row your boat, gently down the stream Merrily, merrily, merrily, merrily, life is but a dream

- There are 18 words.
- Intuitively,

$$
\begin{equation*}
p(\text { row })=\frac{3}{18} \quad p(\text { merrily })=\frac{4}{18} \quad p(\text { is })=\frac{1}{18} \tag{17}
\end{equation*}
$$

A unigram model

- There are 13 unique words.
- We refer to the set of unique words $V=\{$ row, your, boat, gently, down, the, stream, merrily, life, is, but, a, dream $\}$ as the vocabulary.
- We assign each word v a probability β_{v}.
- The probability of a word is

$$
\begin{equation*}
p(w)=\prod_{v \in V} \beta_{v}^{\mathbb{1}_{v=w}} \tag{18}
\end{equation*}
$$

A unigram model

- We assume that each word is independent of others.
- This assumption is obviously wrong, but can go really far.
- The likelihood of β given the data is

$$
\begin{equation*}
\log p\left(w_{1}, \ldots, w_{N}\right)=\log \prod_{i=1}^{N} p\left(w_{i}\right)=\log \prod_{i=1}^{N} \prod_{v \in V} \beta_{v}^{\mathbb{1}_{v=w_{i}}} \tag{19}
\end{equation*}
$$

- Since β is a probability vector, we have the assumption

$$
\begin{equation*}
\sum_{v \in V} \beta_{v}=1 \tag{20}
\end{equation*}
$$

A unigram model

- We arrive at the optimization problem

$$
\begin{array}{ll}
\min _{\beta} & -\sum_{i=1}^{N} \sum_{v \in V} \mathbb{1}_{v=w_{i}} \log \beta_{v} \\
\text { s.t. } & \sum_{v \in V} \beta_{v}=1 \tag{21}
\end{array}
$$

- Its Lagrangian is

$$
\begin{equation*}
F=-\sum_{i=1}^{N} \sum_{v \in V} \mathbb{1}_{v=w_{i}} \log \beta_{v}+\lambda\left(\sum_{v \in V} \beta_{v}-1\right) . \tag{22}
\end{equation*}
$$

A unigram model

- Solving the optimality condition gives

$$
\begin{equation*}
\frac{\partial F}{\partial \beta_{k}}=\sum_{i=1}^{N} \mathbb{1}_{k=w_{i}} \frac{1}{\beta_{k}}-\lambda=0 \Longrightarrow \beta_{k}=\frac{1}{\lambda} \sum_{i=1}^{N} \mathbb{1}_{k=w_{i}} \tag{23}
\end{equation*}
$$

- The dual problem is

$$
\begin{equation*}
\max _{\lambda \geq 0}-\sum_{i=1}^{N} \sum_{v \in V} \mathbb{1}_{v=w_{i}} \log \frac{1}{\lambda} \sum_{j=1}^{N} \mathbb{1}_{v=w_{j}}+\lambda\left(\sum_{v \in V} \frac{1}{\lambda} \sum_{i=1}^{N} \mathbb{1}_{v=w_{i}}-1\right) . \tag{24}
\end{equation*}
$$

A unigram model

$$
\begin{gather*}
\sum_{v \in V} \beta_{v}=\sum_{v \in V} \frac{1}{\lambda} \sum_{i=1}^{N} \mathbb{1}_{v=w_{i}}=1 \Longrightarrow \lambda=\sum_{v \in V} \sum_{i=1}^{N} \mathbb{1}_{v=w_{i}}=N \tag{25}\\
\beta_{k}=\frac{\sum_{i=1}^{N} \mathbb{1}_{k=w_{i}}}{\sum_{v \in V} \sum_{i=1}^{N} \mathbb{1}_{v=w_{i}}}=\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{k=w_{i}} \tag{26}
\end{gather*}
$$

Projection

$$
\begin{equation*}
\|u\| \cos \theta=\|u\| \frac{u^{\top} v}{\|u\|\|v\|}=\frac{u^{\top} v}{\|v\|} \tag{27}
\end{equation*}
$$

Projection

- The projection of x onto w is $\frac{x^{\top} w}{\|w\|}$.
- If we have N data points $\left\{x_{1}, \ldots, x_{N}\right\}$, then the sum of the (squared) projection is

$$
\begin{equation*}
\sum_{i=1}^{N}\left(\frac{x_{i}^{\top} w}{\|w\|}\right)^{2}=\frac{w^{\top} X X^{\top} w}{w^{\top} w} \tag{28}
\end{equation*}
$$

- The sum of squared projection can be seen as the spread of the data.

Maximal projection

Maximal projection

- We want to find the maximum direction to project.
- The optimization problem is

$$
\begin{equation*}
\max _{w} \frac{w^{\top} X X^{\top} w}{w^{\top} w} . \tag{29}
\end{equation*}
$$

Maximal projection

- The problem is scale invariant.

$$
\begin{equation*}
\frac{(a w)^{\top} X X^{\top}(a w)}{(a w)^{\top}(a w)}=\frac{w^{\top} X X^{\top} w}{w^{\top} w} . \tag{30}
\end{equation*}
$$

- The problem is equivalent to

$$
\begin{equation*}
\max _{w} w^{\top} X X^{\top} w \quad \text { s.t. }\|w\|^{2}=1 \tag{31}
\end{equation*}
$$

Maximal projection

- The Lagrangian is

$$
\begin{equation*}
F=w^{\top} X X^{\top} w+\lambda\left(1-\|w\|^{2}\right) . \tag{32}
\end{equation*}
$$

- Finding the optimal solution gives

$$
\begin{equation*}
\frac{\partial F}{\partial w}=\left(X X^{\top}+X X^{\top}\right) w-2 \lambda w=0 \Longrightarrow X X^{\top} w=\lambda w . \tag{33}
\end{equation*}
$$

- It turns out that λ is an eigenvalue, and w an eigenvector.

Maximal projection

- Plugging the solution back to the objective,

$$
\begin{equation*}
\frac{w^{\top} X X^{\top} w}{w^{\top} w}=\frac{\lambda w^{\top} w}{w^{\top} w}=\lambda \tag{34}
\end{equation*}
$$

- Since the goal is to find the maximal projection, this is now equivalent to finding the largest eigenvalue of $X X^{\top}$.

Maximal projection

- The term

$$
\begin{equation*}
\frac{w^{\top} X X^{\top} w}{w^{\top} w} \tag{35}
\end{equation*}
$$

is called the Rayleigh quotient.

- The optimal w is called the first principal component.
- We will learn more about this when we talk about principal component analysis.

