• Minimizing a loss function on a data set produces a program with data.

• How do we know if a program learned with data is correct?
Failure case 1
Failure case 1

![Graph showing the relationship between temperature (degrees) and resistance (kohms). The graph displays a linear trend with data points connected by a straight line.]
Failure case 1
Failure case 2
Failure case 2

![Graph showing a line with points and the degree 1 label]
Failure case 2
Programming with data

- A program written with data is correct if produces the intended results on unseen data.

- **Generalization** is defined as being (approximately) correct on unseen data (most of the time).
How to measure generalization

training data → training program
How to measure generalization
How to measure generalization

training data → training program → testing

test data
Generalization

- There exists a common (yet unknown) distribution \mathcal{D} where both the training data and the test data are drawn from.

- The training set $S = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ includes i.i.d. samples drawn from \mathcal{D}.

- The **training error** for a loss ℓ and a program h is defined as

$$L_S(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i)).$$ \hspace{1cm} (1)

- If we have a test set S', then $L_{S'}(h)$ is the error on the test set (or test error for short) for a program h.

Generalization

• The generalization error for a program h is defined as

$$L_D(h) = \mathbb{E}_{(x,y) \sim D}[\ell(y, h(x))].$$ \hspace{1cm} (2)

• The test error $L_S'(h)$ of a program h is an estimate of the generalization error $L_D(h)$.

• The goal of learning is to find a program h with low generalization error $L_D(h)$.
A learning algorithm

- $A : (X \times Y)^m \rightarrow \mathcal{H}$

- In words, a learning algorithm is a function that takes a data set of size m and returns a function from the hypothesis class \mathcal{H}.

- A hypothesis class \mathcal{H} is the set of possible programs of a particular form.

- For example, a linear classifier is $\mathcal{H} = \{w : x \mapsto w^\top \phi(x)\}$.

A hypothesis class \mathcal{H} is PAC-learnable with A if for any distribution D, for all $\epsilon > 0$ and $0 \leq \delta \leq 1$ such that

$$\Pr_{S \sim D^m} \left[L_D(A(S)) - \min_{h' \in \mathcal{H}} L_D(h') > \epsilon \right] < \delta.$$

(3)
Probably approximately correct

• The data set S is what is random.

• $L_D(A(S))$ is also random.

• $\min_{h' \in \mathcal{H}} L_D(h')$ is the best a program of this form (in \mathcal{H}) can do.

• ϵ is the error tolerance, the approximately correct part.

• δ is the confidence probability, the probably part.
Probably approximately correct

• Suppose $\epsilon = 0.01$ and $\delta = 0.05$.

• We can say that our learning algorithm A can achieve at most 1% worse than the best of any other programs of this form 95% of the time.
No free lunch theorem

Suppose $|\mathcal{X}| = 2m$. For any learning algorithm A, there is a distribution \mathcal{D} and $f : \mathcal{X} \to \{0, 1\}$ such that $L_\mathcal{D}(f) = 0$, but

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left[L_\mathcal{D}(A(S)) \geq \frac{1}{10} \right] \geq \frac{1}{10}. \quad (4)$$
No free lunch theorem

• The 2 and 10 are arbitrary constants.

• In words, for any learning algorithm there exists a task that it will fail.

• What should we do?

• Don’t compare to the best \(f \) in the universe.

• Compare to the best in the hypothesis space.
Tradeoff between model complexity and generalization

- When we say we only compare to the best in \mathcal{H}, we are comparing against $\min_{h \in \mathcal{H}} L_D(h)$.

- When \mathcal{H} is large, $\min_{h \in \mathcal{H}} L_D(h)$ becomes lower.

- When \mathcal{H} is the universe of all functions, we cannot learn.

- \mathcal{H} needs to be about the right size.

- \mathcal{H} can be a large, but the range of A needs to be about the right size.

- For example, we can only run a finite number of steps with stochastic gradient descent, so the range we can explore is limited by the algorithm.
Failure case 2
Failure case 1
Error decomposition

\[L_D(h) = L_D(h) - \min_{h' \in \mathcal{H}} L_D(h') + \min_{h' \in \mathcal{H}} L_D(h') \]

• Approximation error is due to the choice of \(\mathcal{H} \).

• Estimation error is due to not finding the best program in \(\mathcal{H} \).
What about training?

• Since we only have a data set S, we can only minimize $L_S(h)$.

• Minimizing $L_S(h)$ is called empirical risk minimization (ERM).

• If $h_{ERM} = \arg\min_{h \in \mathcal{H}} L_S(h)$, do we know anything about $L_D(h_{ERM})$?
We say that \mathcal{H} has uniform convergence property if for any distribution \mathcal{D}, for all $\epsilon > 0$ and $0 \leq \delta \leq 1$ such that for every $h \in \mathcal{H}$, we have

$$
\mathbb{P}_{S \sim \mathcal{D}^m} [|L_S(h) - L_D(h)| > \epsilon] < \delta.
$$

(6)
Uniform convergence

• Uniform convergence assures that the training error and generalization error are not far from each other.

• This has to happen for all $h \in \mathcal{H}$, the uniform part (and a strong requirement).
Uniform convergence

• If we have uniform convergence,

\[L_D(h_{\text{ERM}}) \leq L_S(h_{\text{ERM}}) + \epsilon \leq L_S(h) + \epsilon \leq L_D(h) + \epsilon + \epsilon \] (7)

for any \(h \in \mathcal{H} \).

• In particular,

\[L_D(h_{\text{ERM}}) \leq \min_{h' \in \mathcal{H}} L_D(h') + 2\epsilon. \] (8)

• If \(\mathcal{H} \) has uniform convergence property, then \(\mathcal{H} \) is PAC-learnable with ERM.