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Programming with data

® Minimizing a loss function on a data set produces a program with data.

® How do we know if a program learned with data is correct?
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Programming with data

® A program written with data is correct if produces the indended results on unseen
data.

¢ Generalization is defined as being (approximately) correct on unseen data (most
of the time).
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Generalization

There exists a common (yet unknown) distribution D where both the training
data and the test data are drawn from.

The training set S = {(x1,y1),- -, (Xn, ¥n)} includes i.i.d. samples drawn from D.

The training error for a loss ¢ and a program h is defined as
1 n
Ls(h) = — > Uyi, h(x))- (1)
i=1

If we have a test set S/, then Lg/(h) is the error on the test set (or test error for
short) for a program h.
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Generalization

® The generalization error for a program h is defined as
Lp(h) = Exy)~[l(y, h(x))]- (2)

® The test error Ls/(h) of a program h is an estimate of the generalization error
Lp(h).

® The goal of learning is to find a program h with low generalization error Lp(h).
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A learning algorithm

A(Xx V)" = H

In words, a learning algorithm is a function that takes a data set of size m and
returns a function from the hypothesis class H.

A hypothesis class H is the set of possible programs of a particular form.

For example, a linear classifier is 7 = {w : x > w ' ¢(x)}.
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Probably approximately correct

A hypothesis class H is PAC-learnable with A if for any distribution D, for all € > 0
and 0 < § <1 such that

Ps.pn |Lp(A(S)) = min Lo(H) > €| < 4. (3)
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Probably approximately correct

The data set S is what is random.

Lp(A(S)) is also random.

ming ey Lp(h') is the best a program of this form (in H) can do.
€ is the error tolerance, the approximately correct part.

0 is the confidence probability, the probably part.
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Probably approximately correct

® Suppose ¢ = 0.01 and § = 0.05.

® \We can say that our learning algorithm A can achieve at most 1% worse than the
best of any other programs of this form 95% of the time.
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No free lunch theorem

Suppose |X'| = 2m. For any learning algorithm A, there is a distribution D and
f: X — {0,1} such that Lp(f) =0, but

Ps.pm [LD(A(S)) > 110] > Tlo (4)
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No free lunch theorem

The 2 and 10 are arbitrary constants.

In words, for any learning algorithm there exists a task that it will fail.
What should we do?

Don't compare to the best f in the universe.

Compare to the best in the hypothesis space.
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Tradeoff between model complexity and generalization

When we say we only compare to the best in H, we are comparing against
minheH LD(h)

When H is large, minpey Lp(h) becomes lower.

When H is the universe of all functions, we cannot learn.

‘H needs to be about the right size.

‘H can be a large, but the range of A needs to be about the right size.

For example, we can only run a finite number of steps with stochastic gradient
descent, so the range we can explore is limited by the algorithm.
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Error decomposition

Lp(h) = Lp(h) — min Lp(h') +  min Lp(H) (5)
(S —
estimation error approximation error

® Approximation error is due to the choice of H.

® Estimation error is due to not finding the best program in .
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What about training?

® Since we only have a data set S, we can only minimize Ls(h).
® Minimizing Ls(h) is called empirical risk minimization (ERM).

® If hgrm = argmingcq, Ls(h), do we know anything about Lp(hgrm)?
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Uniform convergence

We say that H has uniform convergence property if for any distribution D, for all € > 0
and 0 < 6 <1 such that for every h € H, we have

Pspm [|Ls(h) — Lp(h)| > €] < &. (6)
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Uniform convergence

® Uniform convergence assures that the training error and generalization error are
not far from each other.

® This has to happen for all h € H, the uniform part (and a strong requirement).
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Uniform convergence

® |f we have uniform convergence,
LD(hERM) < Ls(hERm)—l-e < L5(h)+€ < Lp(h)+€+€ (7)

for any h € H.

® |n particular,

LD(hERM) < min LD(h/) + 2e. (8)
heH

® |f H{ has uniform convergence property, then H is PAC-learnable with ERM.
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