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Programming with data

• Minimizing a loss function on a data set produces a program with data.

• How do we know if a program learned with data is correct?
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Failure case 1
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Programming with data

• A program written with data is correct if produces the indended results on unseen
data.

• Generalization is defined as being (approximately) correct on unseen data (most
of the time).
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How to measure generalization
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Generalization

• There exists a common (yet unknown) distribution D where both the training
data and the test data are drawn from.

• The training set S = {(x1, y1), . . . , (xn, yn)} includes i.i.d. samples drawn from D.

• The training error for a loss ℓ and a program h is defined as

LS(h) =
1

n

n∑
i=1

ℓ(yi , h(xi )). (1)

• If we have a test set S ′, then LS ′(h) is the error on the test set (or test error for
short) for a program h.
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Generalization

• The generalization error for a program h is defined as

LD(h) = E(x ,y)∼D[ℓ(y , h(x))]. (2)

• The test error LS ′(h) of a program h is an estimate of the generalization error
LD(h).

• The goal of learning is to find a program h with low generalization error LD(h).
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A learning algorithm

• A : (X × Y)m → H

• In words, a learning algorithm is a function that takes a data set of size m and
returns a function from the hypothesis class H.

• A hypothesis class H is the set of possible programs of a particular form.

• For example, a linear classifier is H = {w : x 7→ w⊤ϕ(x)}.
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Probably approximately correct

A hypothesis class H is PAC-learnable with A if for any distribution D, for all ϵ > 0
and 0 ≤ δ ≤ 1 such that

PS∼Dm

[
LD(A(S))− min

h′∈H
LD(h

′) > ϵ

]
< δ. (3)
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Probably approximately correct

• The data set S is what is random.

• LD(A(S)) is also random.

• minh′∈H LD(h
′) is the best a program of this form (in H) can do.

• ϵ is the error tolerance, the approximately correct part.

• δ is the confidence probability, the probably part.
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Probably approximately correct

• Suppose ϵ = 0.01 and δ = 0.05.

• We can say that our learning algorithm A can achieve at most 1% worse than the
best of any other programs of this form 95% of the time.
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No free lunch theorem

Suppose |X | = 2m. For any learning algorithm A, there is a distribution D and
f : X → {0, 1} such that LD(f ) = 0, but

PS∼Dm

[
LD(A(S)) ≥

1

10

]
≥ 1

10
. (4)
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No free lunch theorem

• The 2 and 10 are arbitrary constants.

• In words, for any learning algorithm there exists a task that it will fail.

• What should we do?

• Don’t compare to the best f in the universe.

• Compare to the best in the hypothesis space.
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Tradeoff between model complexity and generalization

• When we say we only compare to the best in H, we are comparing against
minh∈H LD(h).

• When H is large, minh∈H LD(h) becomes lower.

• When H is the universe of all functions, we cannot learn.

• H needs to be about the right size.

• H can be a large, but the range of A needs to be about the right size.

• For example, we can only run a finite number of steps with stochastic gradient
descent, so the range we can explore is limited by the algorithm.
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Failure case 2
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Failure case 1
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Error decomposition

LD(h) = LD(h)− min
h′∈H

LD(h
′)︸ ︷︷ ︸

estimation error

+ min
h′∈H

LD(h
′)︸ ︷︷ ︸

approximation error

(5)

• Approximation error is due to the choice of H.

• Estimation error is due to not finding the best program in H.
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What about training?

• Since we only have a data set S , we can only minimize LS(h).

• Minimizing LS(h) is called empirical risk minimization (ERM).

• If hERM = argminh∈H LS(h), do we know anything about LD(hERM)?
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Uniform convergence

We say that H has uniform convergence property if for any distribution D, for all ϵ > 0
and 0 ≤ δ ≤ 1 such that for every h ∈ H, we have

PS∼Dm [|LS(h)− LD(h)| > ϵ] < δ. (6)
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Uniform convergence

• Uniform convergence assures that the training error and generalization error are
not far from each other.

• This has to happen for all h ∈ H, the uniform part (and a strong requirement).
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Uniform convergence

• If we have uniform convergence,

LD(hERM) ≤ LS(hERM) + ϵ ≤ LS(h) + ϵ ≤ LD(h) + ϵ+ ϵ (7)

for any h ∈ H.

• In particular,

LD(hERM) ≤ min
h′∈H

LD(h
′) + 2ϵ. (8)

• If H has uniform convergence property, then H is PAC-learnable with ERM.
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