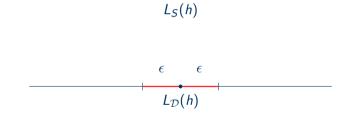
Machine Learning Lecture 15: Generalization 2

Hao Tang

October 26, 2022

PAC learning

Uniform convergence



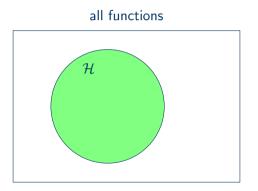
No free lunch theorem

all functions

No free lunch theorem

all functions

No free lunch theorem



Error decomposition

• The generalization error can be decomposed into

$$L_{\mathcal{D}}(h) = \left[L_{\mathcal{D}}(h) - \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') \right] + \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h').$$
(1)

- Estimation error can be controlled if we do ERM and have uniform convergence.
- Approximation error can be controlled by changing the size of \mathcal{H} .

Generalization bounds

- Many (but not all) generalization bounds have the following form.
- With probability 1δ , for all $h \in \mathcal{H}$

$$L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + \sqrt{\frac{C(\mathcal{H})}{n}} + \sqrt{\frac{\log(1/\delta)}{2n}}.$$

- *n* is the number of samples.
- $C(\mathcal{H})$ is a capacity measure of \mathcal{H} .
- There is a family of uniform convergence results.

(2)

Sample complexity

- How many samples do we need to achieve a certain error?
- How large should *n* to get to ϵ ?

$$\sqrt{\frac{C(\mathcal{H})}{n}} + \sqrt{\frac{\log(1/\delta)}{2n}} \le \epsilon \tag{3}$$

• In other words,

$$n = O\left(\frac{C(\mathcal{H}) + \log(1/\delta)}{\epsilon^2}\right)$$
(4)

VC generalization bounds

• Vapnik-Chervonenkis generalization bounds

$$L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + 2\sqrt{rac{8d\log(en/d) + 2\log(4/\delta)}{n}}$$

- *d* is called the VC dimension.
- For linear classifiers $\mathcal{H} = \{x \mapsto w^{\top} \phi(x) : w \in \mathbb{R}^{p}\}$, VC-dim $(\mathcal{H}) = p + 1$.
- For multilayer perceptrons with p edges, VC-dim $(\mathcal{H}) = O(p \log p)$.
- These results are independent of learning algorithms.
- In particular, it is independent of how ERM is done.

(5)

Capacity measure of ${\mathcal H}$

- Shattering
- Norm
- Margin

Shattering

- Given *n* data points, there are 2^n ways of label them $\{+1, -1\}$.
- A set of *n* points is shattered by \mathcal{H} if there is an arrangement of *n* points such that classifiers in \mathcal{H} can produce all 2^n ways of labeling.
- \bullet VC dimension is the largest number of points that ${\cal H}$ can shatter.

Shattering points in 2D

- We could shatter 3 points with a line in 2D.
- However, we cannot shatter 4 points with a line in 2D.
- The VC dimension of lines in 2D is 3.
- In general, linear classifiers with p parameters have VC dimension p + 1.
- We can again shatter 4 points with a 2-layer MLP in 2D.
- Neural networks have larger VC dimension than linear classifiers.

Interpreting generalization bounds

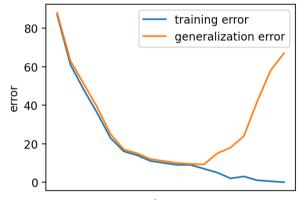
• VC generalization bounds

$$L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + 2\sqrt{rac{8d\log(en/d) + 2\log(4/\delta)}{n}}$$

- When \mathcal{H} is large, $\min_{h \in \mathcal{H}} L_{\mathcal{S}}(h)$ can be low.
- When \mathcal{H} is large, *d* becomes large.

(6)

Capacity-generalization tradeoff



capacity measure

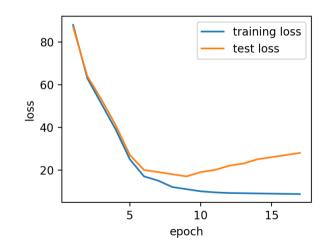
Optimization

- We can only do ERM for a limited number of cases, for example, $w = (XX^{\top})^{-1}Xy$ in linear regression.
- Recall that the convergence of an optimization algorithm tells us how many iterations we need (how large *t* should be) to get to

$$L_{\mathcal{S}}(h_t) - \min_{h \in \mathcal{H}} L_{\mathcal{S}}(h) < \epsilon.$$
(7)

- The number of iterations (or gradient updates) is often devided by the number of training samples.
- A pass through a data set is called an epoch.

Optimization



Optimization

- We care about generalization of zero-one loss, not the cross entropy or the log likelihood.
- Cross entropy or the log likelihood are called surrogate losses.
- Surrogate losses are easier to optimize than the task loss, and usually have some connection to the task loss.
- For example, log loss is easier to optimize than zero-one loss, and is a smooth approximation of zero-one loss.

Error decomposition

• Optimization error

- Mismatch between the surrogate loss and the task loss
- Controlled by the optimization algorithm
- Estimation error
 - Controlled if we do ERM and have uniform convergence
 - Controlled by the capacity of $\ensuremath{\mathcal{H}}$ and the size of the training set
- Approximation error
 - Controlled by the capacity of $\ensuremath{\mathcal{H}}$

Underfitting

- A model is underfitting if there is another model that has a lower training.
- A model h is underfitting if there is f such that $L_S(f) < L_S(h)$.
- The better *f* is unknown unless we find it.
- All models are underfitting with respect to ERM.
- When people say a model is underfitting, they simply mean there is room to improve the training error.

Overfitting

- A model is overfitting if there is another model that has a higher training error but a lower test eror.
- A model h is overfitting if there is f such that $L_S(f) > L_S(h)$ and $L_{S'}(f) < L_{S'}(h)$.
- The better *f* is unknown unless we find it.
- Models can overfit, even though the gap $|L_S(h) L_{S'}(h)|$ between training and test is not large.
- When people say a model is overfitting, they simply mean there is a large gap between the training and test error.

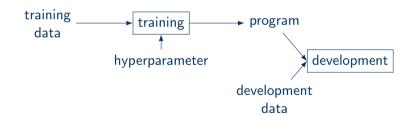
In practice

- We minimize a *surrogate* loss on the training set *S*, i.e., doing ERM.
- We can only do ERM approximately most of the time, because of optimization difficulty.
- Suppose training gives us \hat{h} .
- We use a test set S' and measure task loss $L_{S'}(\hat{h})$ to approximate generalization error.
- We hope $L_{\mathcal{D}}(\hat{h})$ is small when $L_{S'}(\hat{h})$ is small.

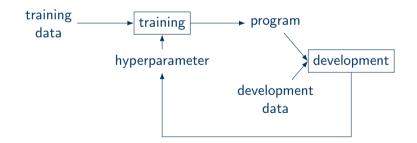
Test set

- Test error on a test set is used to approximate generalization error.
- Test set is supposed to be considered as an indepdent data drawn from the unknown distribution.
- Sometimes we have hyperparameters (not learned from data) we need to tune, for example, the step size in stochastic gradient descent.
- What's the problem of using the test set to tune hyperparameters?

How to measure generalization



How to measure generalization



How to measure generalization

