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PAC learning
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Uniform convergence
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No free lunch theorem
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Error decomposition

• The generalization error can be decomposed into

LD(h) =

[
LD(h)− min

h′∈H
LD(h

′)

]
+ min

h′∈H
LD(h

′). (1)

• Estimation error can be controlled if we do ERM and have uniform convergence.

• Approximation error can be controlled by changing the size of H.
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Generalization bounds

• Many (but not all) generalization bounds have the following form.

• With probability 1− δ, for all h ∈ H

LD(h) ≤ LS(h) +

√
C (H)

n
+

√
log(1/δ)

2n
. (2)

• n is the number of samples.

• C (H) is a capacity measure of H.

• There is a family of uniform convergence results.
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Sample complexity

• How many samples do we need to achieve a certain error?

• How large should n to get to ϵ?√
C (H)

n
+

√
log(1/δ)

2n
≤ ϵ (3)

• In other words,

n = O

(
C (H) + log(1/δ)

ϵ2

)
(4)
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VC generalization bounds

• Vapnik-Chervonenkis generalization bounds

LD(h) ≤ LS(h) + 2

√
8d log(en/d) + 2 log(4/δ)

n
(5)

• d is called the VC dimension.

• For linear classifiers H = {x 7→ w⊤ϕ(x) : w ∈ Rp}, VC-dim(H) = p + 1.

• For multilayer perceptrons with p edges, VC-dim(H) = O(p log p).

• These results are independent of learning algorithms.

• In particular, it is independent of how ERM is done.
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Capacity measure of H

• Shattering

• Norm

• Margin
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Shattering

• Given n data points, there are 2n ways of label them {+1,−1}.

• A set of n points is shattered by H if there is an arrangement of n points such
that classifiers in H can produce all 2n ways of labeling.

• VC dimension is the largest number of points that H can shatter.
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Shattering points in 2D

• We could shatter 3 points with a line in 2D.

• However, we cannot shatter 4 points with a line in 2D.

• The VC dimension of lines in 2D is 3.

• In general, linear classifiers with p parameters have VC dimension p + 1.

• We can again shatter 4 points with a 2-layer MLP in 2D.

• Neural networks have larger VC dimension than linear classifiers.
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Interpreting generalization bounds

• VC generalization bounds

LD(h) ≤ LS(h) + 2

√
8d log(en/d) + 2 log(4/δ)

n
(6)

• When H is large, minh∈H LS(h) can be low.

• When H is large, d becomes large.
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Capacity-generalization tradeoff
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Optimization

• We can only do ERM for a limited number of cases, for example,
w = (XX⊤)−1Xy in linear regression.

• Recall that the convergence of an optimization algorithm tells us how many
iterations we need (how large t should be) to get to

LS(ht)− min
h∈H

LS(h) < ϵ. (7)

• The number of iterations (or gradient updates) is often devided by the number of
training samples.

• A pass through a data set is called an epoch.
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Optimization
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Optimization

• We care about generalization of zero-one loss, not the cross entropy or the log
likelihood.

• Cross entropy or the log likelihood are called surrogate losses.

• Surrogate losses are easier to optimize than the task loss, and usually have some
connection to the task loss.

• For example, log loss is easier to optimize than zero-one loss, and is a smooth
approximation of zero-one loss.
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Error decomposition

• Optimization error

– Mismatch between the surrogate loss and the task loss
– Controlled by the optimization algorithm

• Estimation error

– Controlled if we do ERM and have uniform convergence
– Controlled by the capacity of H and the size of the training set

• Approximation error

– Controlled by the capacity of H
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Underfitting

• A model is underfitting if there is another model that has a lower training.

• A model h is underfitting if there is f such that LS(f ) < LS(h).

• The better f is unknown unless we find it.

• All models are underfitting with respect to ERM.

• When people say a model is underfitting, they simply mean there is room to
improve the training error.
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Overfitting

• A model is overfitting if there is another model that has a higher training error
but a lower test eror.

• A model h is overfitting if there is f such that LS(f ) > LS(h) and LS ′(f ) < LS ′(h).

• The better f is unknown unless we find it.

• Models can overfit, even though the gap |LS(h)− LS ′(h)| between training and
test is not large.

• When people say a model is overfitting, they simply mean there is a large gap
between the training and test error.
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In practice

• We minimize a surrogate loss on the training set S , i.e., doing ERM.

• We can only do ERM approximately most of the time, because of optimization
difficulty.

• Suppose training gives us ĥ.

• We use a test set S ′ and measure task loss LS ′(ĥ) to approximate generalization
error.

• We hope LD(ĥ) is small when LS ′(ĥ) is small.
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Test set

• Test error on a test set is used to approximate generalization error.

• Test set is supposed to be considered as an indepdent data drawn from the
unknown distribution.

• Sometimes we have hyperparameters (not learned from data) we need to tune, for
example, the step size in stochastic gradient descent.

• What’s the problem of using the test set to tune hyperparameters?
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How to measure generalization
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