Machine Learning
 Lecture 16: Generalization 3

Hao Tang

December 11, 2022

Reusing test sets

[^0]
Capacity-generalization tradeoff

- With probability $1-\delta$, for all $h \in \mathcal{H}$,

$$
\begin{equation*}
L_{\mathcal{D}}(h) \leq L_{S}(h)+\sqrt{\frac{8 d \log (e n / d)+\log (1 / \delta)}{n}} \tag{1}
\end{equation*}
$$

- As the capacity of \mathcal{H} increases, $\min _{h \in \mathcal{H}} L_{S}(h)$ drops but the second term goes up.

Capacity-generalization tradeoff

Failure case 2

Large hypothesis classes

- Compare

$$
\begin{aligned}
& \mathcal{H}_{1}=\text { the set of two-layer neural networks with } 512 \text { hidden units } \\
& \mathcal{H}_{2}=\text { the set of all two-layer neural networks }
\end{aligned}
$$

- \mathcal{H}_{1} has a finite VC dimension, while the VC dimension of \mathcal{H}_{2} is infinite!
- It is much easier (and tempting) to reduce the training error by increasing the hypothesis class.

Failure case 2

Failure case 2

- Compare

$$
\begin{aligned}
& w_{2}=[0.206,-0.317] \\
& w_{9}=[-30.69,93.27,-2.65,-3.29,-0.124,0.0248,0.0017,0.0000245, \\
& -0.00000423,-0.0000000857]
\end{aligned}
$$

- The learned weights are either too large or too small for degree 9 .
- What if instead we optimize

$$
\begin{equation*}
\min _{w \in \mathcal{H}} L_{S}(w)+\frac{\lambda}{2}\|w\|^{2} \tag{4}
\end{equation*}
$$

Failure case 2

Failure case 2

Failure case 2

Failure case 2

L_{2} Regularization

- The term $\frac{\lambda}{2}\|w\|^{2}$ is called an L_{2} regularizer.
- It is also known as weight decay.
- The expression

$$
\begin{equation*}
L_{S}(w)+\frac{\lambda}{2}\|w\|^{2} \tag{5}
\end{equation*}
$$

is the Lagrangian of

$$
\begin{array}{cl}
\min _{w} & L_{S}(w) \\
\text { s.t. } & \|w\| \leq B \tag{7}
\end{array}
$$

L_{2} Regularization

- The L_{2} regularizer has an effect of controlling the capacity of the hypothesis class.
- Compare

$$
\begin{align*}
& \mathcal{H}=\left\{x \mapsto w^{\top} \phi(x): w \in \mathbb{R}^{d}\right\} \tag{8}\\
& \mathcal{H}=\left\{x \mapsto w^{\top} \phi(x):\|w\| \leq B\right\} \tag{9}
\end{align*}
$$

Shattering

- Given n data points, there are 2^{n} ways of label them $\{+1,-1\}$.
- A set of n points is shattered by \mathcal{H} if there is an arrangement of n points such that classifiers in \mathcal{H} can produce all 2^{n} ways of labeling.
- VC dimension is the largest number of points that \mathcal{H} can shatter.

Rademacher complexity

- Rademacher complexity (in binary classification) on a data set S is defined as

$$
\begin{equation*}
\mathfrak{R}_{S}(\mathcal{H})=\mathbb{E}_{\sigma}\left[\max _{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} h\left(x_{i}\right)\right], \tag{10}
\end{equation*}
$$

where $\sigma \in\{+1,-1\}^{n}$ is uniformly chosen.

- In words, Rademacher complexity measures how well a class of classifiers correlate with random noise.
- Rademacher complexity (in binary classification) for n points is defined as

$$
\begin{equation*}
\Re_{n}(\mathcal{H})=\mathbb{E}_{S \sim \mathcal{D}^{n}}\left[\Re_{S}(\mathcal{H})\right] . \tag{11}
\end{equation*}
$$

Rademacher generalization bounds

- With probability $1-\delta$, for all $h \in \mathcal{H}$

$$
\begin{equation*}
L_{\mathcal{D}}(h) \leq L_{S}(h)+\Re_{n}(\mathcal{H})+\sqrt{\frac{\log (1 / \delta)}{2 n}} \tag{12}
\end{equation*}
$$

- With probability $1-\delta$, for all $h \in \mathcal{H}$

$$
\begin{equation*}
L_{\mathcal{D}}(h) \leq L_{S}(h)+\Re_{S}(\mathcal{H})+3 \sqrt{\frac{\log (2 / \delta)}{2 n}} \tag{13}
\end{equation*}
$$

Linear classifiers with bounded norm

- If $S=\{x:\|x\| \leq r\}$ and $\mathcal{H}=\left\{x \mapsto w^{\top} x:\|w\| \leq B\right\}$,

$$
\begin{equation*}
\Re_{S}(\mathcal{H}) \leq \sqrt{\frac{r^{2} B^{2}}{n}} \tag{14}
\end{equation*}
$$

Stability

- If we replace a data point in the data set, do you get a very different classifier?
- We say that the learning algorithm is stable is changing a data point does not change the the classifier by much.
- If S is the data set, then $S^{(i)}$ is the same data set with the i-th data point replaced with another random data point.

Stability

- Stable learning algorithms don't overfit.

$$
\begin{equation*}
\mathbb{E}_{S \sim \mathcal{D}^{n}}\left[L_{\mathcal{D}}(A(S))-L_{S}(A(S))\right]=\underset{\substack{\sim \cup(n) \\(x, y) \sim \mathcal{D} \\(x, y)}}{ }\left[\ell\left(A\left(S^{(i)}\right)\left(x_{i}\right), y_{i}\right)-\ell\left(A(S)\left(x_{i}\right), y_{i}\right)\right] \tag{15}
\end{equation*}
$$

- Proof

$$
\begin{align*}
\mathbb{E}_{S}\left[L_{\mathcal{D}}(A(S))\right]= & \mathbb{E}_{S}\left[\mathbb{E}_{(x, y) \sim \mathcal{D}}[\ell(A(S)(x), y)]\right]=\mathbb{E}_{S}\left[\mathbb{E}_{(x, y) \sim \mathcal{D}}\left[\ell\left(A\left(S^{(i)}\right)\left(x_{i}\right), y_{i}\right)\right]\right] \tag{16}\\
& \mathbb{E}_{S}\left[L_{S}(A(S))\right]=\mathbb{E}_{S}\left[\mathbb{E}_{i \sim U(n)}\left[\ell\left(A(S)\left(x_{i}\right), y_{i}\right)\right]\right] \tag{17}
\end{align*}
$$

Lipschitz loss

- If the loss is ρ-Lipschitz continuous,

$$
\begin{equation*}
\ell\left(A\left(S^{(i)}\right)\left(x_{i}\right), y_{i}\right)-\ell\left(A(S)\left(x_{i}\right), y_{i}\right) \leq \rho\left\|A\left(S^{(i)}\right)-A(S)\right\| . \tag{18}
\end{equation*}
$$

- We only need a bound on $\left\|A\left(S^{(i)}\right)-A(S)\right\|$.

Lipschitz and strongly convex

- If a function is λ-strongly convex,

$$
\begin{equation*}
\frac{\lambda}{2}\left\|x-x^{*}\right\|^{2} \leq f(x)-f\left(x^{*}\right) \tag{19}
\end{equation*}
$$

where x^{*} is the minimizer.

- If we can bound $f(x)-f\left(x^{*}\right)$, then we can have bound on $\left\|x-x^{*}\right\|$.
- We will then let $x=A\left(S^{(i)}\right)$ and $x^{*}=A(S)$.

L_{2} regularizer

- $\frac{\lambda}{2}\|w\|^{2}$ is λ-strongly convex.
- $L_{S}(w)+\frac{\lambda}{2}\|w\|^{2}$ is λ-strongly convex if $L_{S}(w)$ is convex.
- Adding a L_{2} regularizer makes learning stable.
- If we choose $A(S)=\operatorname{argmin}_{w \in \mathcal{H}} L_{S}(w)+\frac{\lambda}{2}\|w\|^{2}$, we get

$$
\begin{equation*}
\left\|A\left(S^{(i)}\right)-A(S)\right\| \leq \frac{2 \rho}{\lambda n} \tag{20}
\end{equation*}
$$

- In the end, we have

$$
\begin{equation*}
\mathbb{E}_{S \sim \mathcal{D}^{n}}\left[L_{\mathcal{D}}(A(S))-L_{S}(A(S))\right] \leq \frac{2 \rho^{2}}{\lambda n} \tag{21}
\end{equation*}
$$

Hypythesis class limited by the learning algorithm

- Compare

$$
\mathcal{H}_{1}=\text { the set of all two-layer neural networks }
$$

$\mathcal{H}_{2}=$ the set of all two-layer neural networks with bounded norm B
$\mathcal{H}_{3}=$ the set of all two-layer neural networks searched with t gradient updates

- \mathcal{H}_{1} has infinite VC dimension, while the last two has bounded Rademacher complexity.

[^0]: Image credit: (Recht et al., 2019)

