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Reusing test sets

Image credit: (Recht et al., 2019)
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Capacity-generalization tradeoff

• With probability 1− δ, for all h ∈ H,

LD(h) ≤ LS(h) +

√
8d log(en/d) + log(1/δ)

n
(1)

• As the capacity of H increases, minh∈H LS(h) drops but the second term goes up.
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Capacity-generalization tradeoff
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Failure case 2
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Large hypothesis classes

• Compare

H1 = the set of two-layer neural networks with 512 hidden units (2)

H2 = the set of all two-layer neural networks (3)

• H1 has a finite VC dimension, while the VC dimension of H2 is infinite!

• It is much easier (and tempting) to reduce the training error by increasing the
hypothesis class.
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Failure case 2
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Failure case 2

• Compare

w2 = [0.206,−0.317]

w9 = [−30.69, 93.27,−2.65,−3.29,−0.124, 0.0248, 0.0017, 0.0000245,
−0.00000423,−0.0000000857]

• The learned weights are either too large or too small for degree 9.

• What if instead we optimize

min
w∈H

LS(w) +
λ

2
∥w∥2 (4)

8 / 21



Failure case 2

λ = 0.002
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Failure case 2

λ = 0.02
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Failure case 2

λ = 0.1
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Failure case 2

λ = 0.2
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L2 Regularization

• The term λ
2∥w∥2 is called an L2 regularizer.

• It is also known as weight decay.

• The expression

LS(w) +
λ

2
∥w∥2 (5)

is the Lagrangian of

min
w

LS(w) (6)

s.t. ∥w∥ ≤ B (7)
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L2 Regularization

• The L2 regularizer has an effect of controlling the capacity of the hypothesis class.

• Compare

H = {x 7→ w⊤ϕ(x) : w ∈ Rd} (8)

H = {x 7→ w⊤ϕ(x) : ∥w∥ ≤ B} (9)
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Shattering

• Given n data points, there are 2n ways of label them {+1,−1}.

• A set of n points is shattered by H if there is an arrangement of n points such
that classifiers in H can produce all 2n ways of labeling.

• VC dimension is the largest number of points that H can shatter.
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Rademacher complexity

• Rademacher complexity (in binary classification) on a data set S is defined as

RS(H) = Eσ

[
max
h∈H

1

n

n∑
i=1

σih(xi )

]
, (10)

where σ ∈ {+1,−1}n is uniformly chosen.

• In words, Rademacher complexity measures how well a class of classifiers correlate
with random noise.

• Rademacher complexity (in binary classification) for n points is defined as

Rn(H) = ES∼Dn [RS(H)]. (11)
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Rademacher generalization bounds

• With probability 1− δ, for all h ∈ H

LD(h) ≤ LS(h) +Rn(H) +

√
log(1/δ)

2n
(12)

• With probability 1− δ, for all h ∈ H

LD(h) ≤ LS(h) +RS(H) + 3

√
log(2/δ)

2n
(13)
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Linear classifiers with bounded norm

• If S = {x : ∥x∥ ≤ r} and H = {x 7→ w⊤x : ∥w∥ ≤ B},

RS(H) ≤
√

r2B2

n
(14)
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Stability

• If we replace a data point in the data set, do you get a very different classifier?

• We say that the learning algorithm is stable is changing a data point does not
change the the classifier by much.

• If S is the data set, then S (i) is the same data set with the i-th data point
replaced with another random data point.
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Stability

• Stable learning algorithms don’t overfit.

ES∼Dn [LD(A(S))− LS(A(S))] = E i∼U(n)
S∼Dn

(x ,y)∼D

[ℓ(A(S (i))(xi ), yi )− ℓ(A(S)(xi ), yi )]

(15)

• Proof

ES [LD(A(S))] = ES [E(x ,y)∼D[ℓ(A(S)(x), y)]] = ES [E(x ,y)∼D[ℓ(A(S
(i))(xi ), yi )]]

(16)

ES [LS(A(S))] = ES [Ei∼U(n)[ℓ(A(S)(xi ), yi )]] (17)
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Lipschitz loss

• If the loss is ρ-Lipschitz continuous,

ℓ(A(S (i))(xi ), yi )− ℓ(A(S)(xi ), yi ) ≤ ρ∥A(S (i))− A(S)∥. (18)

• We only need a bound on ∥A(S (i))− A(S)∥.
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Lipschitz and strongly convex

• If a function is λ-strongly convex,

λ

2
∥x − x∗∥2 ≤ f (x)− f (x∗) (19)

where x∗ is the minimizer.

• If we can bound f (x)− f (x∗), then we can have bound on ∥x − x∗∥.

• We will then let x = A(S (i)) and x∗ = A(S).
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L2 regularizer

• λ
2∥w∥2 is λ-strongly convex.

• LS(w) + λ
2∥w∥2 is λ-strongly convex if LS(w) is convex.

• Adding a L2 regularizer makes learning stable.

• If we choose A(S) = argminw∈H LS(w) + λ
2∥w∥2, we get

∥A(S (i))− A(S)∥ ≤ 2ρ

λn
. (20)

• In the end, we have

ES∼Dn [LD(A(S))− LS(A(S))] ≤
2ρ2

λn
(21)
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Hypythesis class limited by the learning algorithm

• Compare

H1 = the set of all two-layer neural networks (22)

H2 = the set of all two-layer neural networks with bounded norm B (23)

H3 = the set of all two-layer neural networks searched with t gradient updates
(24)

• H1 has infinite VC dimension, while the last two has bounded Rademacher
complexity.
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