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Reusing test sets
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Image credit: (Recht et al., 2019)
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Capacity-generalization tradeoff

e With probability 1 — 9, for all h € H,

8d log(en/d) + log(1/0)

Lp(h) < Ls(h) +\/ (1)

® As the capacity of H increases, minycy Ls(h) drops but the second term goes up.
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Capacity-generalization tradeoff

error

80 A

60

40 A

—— ftraining error
—— generalization error

capacity measure

421



Failure case 2
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Large hypothesis classes

e Compare

H1 = the set of two-layer neural networks with 512 hidden units (2)

Ho = the set of all two-layer neural networks (3)
® 7{1 has a finite VC dimension, while the VC dimension of H> is infinite!

® |t is much easier (and tempting) to reduce the training error by increasing the
hypothesis class.
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Failure case 2

| —— degree 9

—— degree 1




Failure case 2

Compare
wy = [0.206, —0.317]

wg = [—30.69, 93.27, —2.65, —3.29, —0.124, 0.0248, 0.0017, 0.0000245,
—0.00000423, —0.0000000857]

The learned weights are either too large or too small for degree 9.
What if instead we optimize

A
in L Zliwl? 4
min Ls(w) + S lwll (4)
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—— degree 1

| —— degree 9 (reg)

9/21



Failure case 2

| —— degree 9 (reg)

—— degree 1

=20 -15 -10 =5 0 5 10 15

9/21



Failure case 2

—— degree 1
—— degree 9 (reg)

-4

-6 T T T T
=20 -15 -10 =5 0 5 10 15

9/21



Failure case 2

—— degree 1
—— degree 9 (reg)

-4

-6 T T T T
=20 -15 -10 =5 0 5 10 15

9/21



L, Regularization

® The term %HWH2 is called an Ly regularizer.
® |t is also known as weight decay.

® The expression

Ls(w) + 3wl (5)
is the Lagrangian of

mmi/n Ls(w) (6)

st w|<B (7)
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L, Regularization

® The L; regularizer has an effect of controlling the capacity of the hypothesis class.

e Compare

H={x—w ¢(x):weR} (8)

H={x—w'o(x):|lw| < B} (9)
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Shattering

® Given n data points, there are 2" ways of label them {+1, —1}.

® A set of n points is shattered by H if there is an arrangement of n points such
that classifiers in H can produce all 2”7 ways of labeling.

e VC dimension is the largest number of points that H can shatter.
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Rademacher complexity

® Rademacher complexity (in binary classification) on a data set S is defined as

1 n
max — E a,-h(x,-)] , (10)
where o € {+1,—1}" is uniformly chosen.

® In words, Rademacher complexity measures how well a class of classifiers correlate
with random noise.

® Rademacher complexity (in binary classification) for n points is defined as
Rn(H) = Espn[Rs(H)]. (11)

13/21



Rademacher generalization bounds

e With probability 1 — 9, for all h € H

log(1/6
Lo(h) < Ls(h) + 9,() + |/ B (12)
e With probability 1 — 9, for all h € H
log(2/6)

LD(h) < L5(h)+9%5(7’[)+3 (13)

2n

14/21



Linear classifiers with bounded norm

e IfS={x:|x||<r}and H={x—wlx:|w| < B},

r2B2

n

As(M) < (14)
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Stability

® |f we replace a data point in the data set, do you get a very different classifier?

® We say that the learning algorithm is stable is changing a data point does not
change the the classifier by much.

e If S is the data set, then S() is the same data set with the i-th data point
replaced with another random data point.
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Stability

® Stable learning algorithms don't overfit.

Eswpr[Lp(A(S)) = Ls(A(S))] = E iwum) [LASD) (), vi) — €(A(S)(x:), yi)]

S~D"
(x.y)~D
(15)
® Proof
ES[LD(A(S))] = ES [E(x,y)ND [g(A(S)(X)v y)]] = ES[E(x,y)ND [K(A(S(’))(Xl)a yl)]]
(16)
Es[Ls(A(S))] = Es[Eiu(n [E(A(S) (%), yi)ll (17)
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Lipschitz loss

® |f the loss is p-Lipschitz continuous,
UASD) (), i) = LAS) (), vi) < pIIAGSD) = A(S)II- (18)

® We only need a bound on ||A(S()) — A(S)]|.
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Lipschitz and strongly convex

e |f a function is A-strongly convex,

=2 < £x) — ) (19)

where x* is the minimizer.
® |f we can bound f(x) — f(x*), then we can have bound on |[x — x*||.

® We will then let x = A(S()) and x* = A(S).
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L, regularizer

2||wl? is A-strongly convex.
Ls(w) + 3|lw||? is A-strongly convex if Ls(w) is convex.
Adding a Ly regularizer makes learning stable.

If we choose A(S) = argmin, ey Ls(w) + 5| w|/?, we get

AGS) ~ AS)| < 2. (20)
In the end, we have
2p?
Es-oelLn(A(S)) - Ls(A(S))] < (21)
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Hypythesis class limited by the learning algorithm

e Compare
‘H1 = the set of all two-layer neural networks (22)
Ho = the set of all two-layer neural networks with bounded norm B (23)

Hs3 = the set of all two-layer neural networks searched with t gradient updates
(24)

® 7{;1 has infinite VC dimension, while the last two has bounded Rademacher
complexity.
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