
Machine Learning
Lecture 24: Boosting

Hiroshi Shimodaira

11 November 2022

Ver. 1.0

1 / 17

Questions you should be able to answer after this week

• Ensemble learning (committee method)

• Theoretical background of ensemble learning

• Bagging

• Boosting

• AdaBoost - training algorithm, optimisation problem, loss function

• Applications of boosting

2 / 17

Ensemble learning - committee method

• Single models: logistic regression, SVM, decision tree

• Mixture models: GMM

• Multiple models:

f1(x), f2(x), . . . , fM(x) · · · base models / weak learners

◦ Model linear averaging

y = F (x) =
1

M

M∑
i=1

fi (x)

y = F (x) =
1

M

M∑
i=1

αi fi (x)

◦ Training strategies for multiple models

∗ Train each model separately
∗ Train models one-by-one sequentially

3 / 17

Theoretical background for ensemble learning

A Committee model for a regression task

y = F (x) = 1

M

M∑
i=1

fi (x)

fi (x) = f (x) + εi (x)

Eavr =
1

M

M∑
i=1

E

[
{fi (x)− f (x)}2

]
=

1

M

M∑
i=1

E[εi (x)2]

Ecomm = E

[
{F (x)− f (x)}2

]
= E

[{
1

M

M∑
i=1

fi (x)− f (x)
}2
]

= E

[{
1

M

M∑
i=1

εi (x)
}2
]

(Assuming that the errors have zero mean and are uncorrelated)

=
1

M

{
1

M

M∑
i=1

E[εi (x)2]
}

=
1

M
Eavr

4 / 17

Theoretical background for ensemble learning (cont.)

A Committee model of majority voting for a classification task

Base models {fi (x)} – binary classifiers with classification accuracy p.

yi = 1(fi (x) > 0), where yi ∈ {0, 1}

Let S denote the number of votes for class 1,

S =
M∑
i=1

yi

Accuracy of the committee model:

Pr(S > M/2) = 1− B(M/2,M, p)

where B(k , n, p) is the cdf of the binomial distribution of k with parameters n and p.

5 / 17

Background theories for ensemble learning (cont.)

101 102 103 104

M

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

p=0.8
p=0.7
p=0.6
p=0.55
p=0.52
p=0.51

Accuracy of the committee model

NB: strong assumption - each base model makes independent errors
6 / 17

Brief history of committee methods

1992 Stacking (Wolpert)

1994 Bagging (Brieman)

1995 AdaBoost (Freund & Schapire)

Random Forests (Tin Kam Ho)

1997 Speech recognition with ROVER (Fiscus)

2001 Face detection with AdaBoost (Viola & Jones)

7 / 17

https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1007/BF00058655
https://www.site.uottawa.ca/~stan/csi5387/boost-tut-ppr.pdf
https://doi.org/10.1109/34.709601
https://doi.org/10.1109/ASRU.1997.659110
http://dx.doi.org/10.1023/B:VISI.0000013087.49260.fb

Bagging – bootstrap aggregating L. Brieman, 1994, 1996

• Train each fi (x) on a training dataset Di of size n - sampled from the original
data set D uniformly and with replacement.
• Employ the same training algorithm over all {fi (x)}

After Bootstrap aggregating (bagging) method of Wikimedia common

8 / 17

https://en.wikipedia.org/wiki/File:Ensemble_Bagging.svg
https://commons.wikimedia.org/wiki/Main_Page

Boosting

F (x ;θ) =
M∑

m=1

αm fm(x ;θi)

min
θ,α

L(F) = min
θ,α

n∑
i=1

ℓ(yi ,F (xi ;θ))

• fm ∈ {−1,+1} , m = 1, . . . ,M

• No closed-form solutions normally

• Fit additive models sequentially

0.4 0.2 0.0 0.2 0.4

0.0

0.2

0.4

0.6

0.8

y

Residuals and tree predictions
Training set
f1(x1)

0.4 0.2 0.0 0.2 0.4

0.0

0.2

0.4

0.6

0.8

y

Ensemble predictions
Training set
F1(x1) = f1(x1)

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

y
F 1

(x
1)

Residuals
f2(x1)

0.4 0.2 0.0 0.2 0.4

0.0

0.2

0.4

0.6

0.8

y

F2(x1) = f1(x1) + f2(x1)

0.4 0.2 0.0 0.2 0.4
x1

0.4

0.2

0.0

0.2

0.4

y
F 2

(x
1)

f3(x1)

0.4 0.2 0.0 0.2 0.4
x1

0.0

0.2

0.4

0.6

0.8

y

F3(x1) = f1(x1) + f2(x1) + f3(x1)

Adapted from boosted regr trees.ipynb
9 / 17

https://github.com/probml/pyprobml/blob/master/notebooks/book1/18/boosted_regr_trees.ipynb

AdaBoost – adaptive boosting (Freund, Schapire 1995)

Training data set {(x1, y1), . . . , (xn, yn)}, Classifiers: {f1(x ;θ1), . . . , fM(x ;θM)}

Step 1 Initialise the weights w = (w1, . . . ,wn), where wi =
1
n .

Step 2 For m = 1 to M:

(a) Fit a classifier fm(x) to the training data using w.

(b) Compute: errm =

∑
yi ̸=fm(xi) wi∑n

i=1 wi

(c) Compute: αm =
1

2
ln

(
1− errm
errm

)
· · · cf. logit function

(d) Update the weights: wi ← wi e
{αm 1(yi ̸=fm(xi)}, i = 1, . . . , n

Step 3 Output the final model: F (x) = sign

(
M∑

m=1

αm fm(x)
)

10 / 17

AdaBoost: example

Weak learners: one-level decision trees (i.e. one nodes) – “decision stumps”.

m = 1

−1 0 1 2

−2

0

2 m = 2

−1 0 1 2

−2

0

2 m = 3

−1 0 1 2

−2

0

2

m = 6

−1 0 1 2

−2

0

2 m = 10

−1 0 1 2

−2

0

2 m = 150

−1 0 1 2

−2

0

2

From Figure 14.2 of C.Bishop’s Pattern Recognition and Machine Learning

11 / 17

https://en.wikipedia.org/wiki/Decision_stump
https://www.microsoft.com/en-us/research/people/cmbishop/prml-book/

Optimisation problem in AdaBoost

Assume we have trained f1(x), . . . , fm−1(x) and obtained α1, . . . , αm−1.

Fm−1(x) = α1f1(x) + · · ·αm−1fm−1(x)
Fm(x) = Fm−1(x) + αmfm(x)

We now want to train fm(x) and estimate αm with the exponential loss function Lm
defined below.

Lm =
n∑

i=1

e−yiFm(xi) =
n∑

i=1

e(−yiFm−1(xi)−yiαmfm(x)) · · · convex function of α

=
n∑

i=1

wm,i e
(−yiαmfm(x)) , where wm,i = e(−yiFm−1(xi))

= e−αm
∑

yi=fm(x)

wm,i + eαm
∑

yi ̸=fm(x)

wm,i

=
(
eαm − e−αm

) ∑
yi ̸=fm(x)

wm,i + e−αm

n∑
i=1

wm,i → min
fm

∑
yi ̸=fm(x)

wm,i

12 / 17

Optimisation problem in AdaBoost (cont.)

We now would like to minimise Lm with respect to αm

∂Lm
∂αm

=
∂

∂αm

(
e−αm

∑
yi=fm(x)

wm,i + eαm
∑

yi ̸=fm(x)

wm,i

)
= −e−αm

∑
yi=fm(x)

wm,i + eαm
∑

yi ̸=fm(x)

wm,i = 0

e−αm
∑

yi=fm(x)

wm,i = eαm
∑

yi ̸=fm(x)

wm,i

Taking logarithm yields:

−αm ln

(∑
yi=fm(x)

wm,i

)
= αm ln

(∑
yi ̸=fm(x)

wm,i

)
Hence

αm =
1

2
ln

(∑
yi=Fm(x)wm,i∑
yi ̸=Fm(x)wm,i

)
=

1

2
ln

(
(
∑

yi=Fm(x)wm,i)/
∑n

i=1 wm,i

(
∑

yi ̸=Fm(x)wm,i)/
∑n

i=1 wm,i

)
=

1

2
ln

(
1− errm
errm

)
13 / 17

Exponential loss in AdaBoost

ℓ(y ,F (x)) = e−yF (x)

• Differentiable and an approximation of the ideal misclassification error function.
• Its sequential minimisation leads to the simple AdaBoost algorithm.
• It penalises large negative values of yF (x), putting a lot of weight on misclassified

samples → very sensitive to outliers (mislabelled examples)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0 0-1 loss
hinge loss
log loss
exp loss

14 / 17

Applications of boosting – face detection

How would you detect
a face?

(R. Vaillant, C. Monrocq and Y. LeCun, 1994)

http://demo.pittpatt.com/

How does album software
tag your friends?

15 / 17

Viola–Jones Face detection (2001)

• Face detector consists of linear combination of ’weak’ classifiers that utilise five types of primitive
features.

• The detector is trained on a training data set of a large number of positive and negative samples.
• Scan the input image with a sub-window (24 x 24 pixels) to detect a face.

Viola & Jones’ paper: https://doi.org/10.1023/B:VISI.0000013087.49260.fb

A nice demo: http://vimeo.com/12774628
16 / 17

https://doi.org/10.1023/B:VISI.0000013087.49260.fb
http://vimeo.com/12774628

Other methods and software tools for boosting

• LogitBoost

Lm =
n∑

i=1

log
(
1 + e−yiFm(xi)

)
• Gradient boosting

• Extreme gradient boosting – dominating approach for small, tabular data sets

◦ XGBoost (eXtreme Gradient Boosting) [Tianqi Chen & Carlos Guestrin, 2016] - a
software tool

17 / 17

https://github.com/dmlc/xgboost

