Questions you should be able to answer after this week

• Ensemble learning (committee method)
• Theoretical background of ensemble learning
• Bagging
• Boosting
• AdaBoost - training algorithm, optimisation problem, loss function
• Applications of boosting
Ensemble learning - committee method

- Single models: logistic regression, SVM, decision tree
- Mixture models: GMM
- Multiple models:
 \[f_1(x), f_2(x), \ldots, f_M(x) \ldots \text{base models / weak learners} \]
 - Model linear averaging
 \[
y = F(x) = \frac{1}{M} \sum_{i=1}^{M} f_i(x)
 \]
 \[
y = F(x) = \frac{1}{M} \sum_{i=1}^{M} \alpha_i f_i(x)
 \]
 - Training strategies for multiple models
 * Train each model separately
 * Train models one-by-one sequentially
Theoretical background for ensemble learning

A Committee model for a regression task

\[y = F(x) = \frac{1}{M} \sum_{i=1}^{M} f_i(x) \]

\[f_i(x) = f(x) + \varepsilon_i(x) \]

\[E_{\text{avr}} = \frac{1}{M} \sum_{i=1}^{M} \mathbb{E} \left[\{ f_i(x) - f(x) \}^2 \right] = \frac{1}{M} \sum_{i=1}^{M} \mathbb{E} [\varepsilon_i(x)^2] \]

\[E_{\text{comm}} = \mathbb{E} \left[\{ F(x) - f(x) \}^2 \right] = \mathbb{E} \left[\left\{ \frac{1}{M} \sum_{i=1}^{M} f_i(x) - f(x) \right\}^2 \right] = \mathbb{E} \left[\left\{ \frac{1}{M} \sum_{i=1}^{M} \varepsilon_i(x) \right\}^2 \right] \]

(Assuming that the errors have zero mean and are uncorrelated)

\[= \frac{1}{M} \left\{ \frac{1}{M} \sum_{i=1}^{M} \mathbb{E} [\varepsilon_i(x)^2] \right\} = \frac{1}{M} E_{\text{avr}} \]
A Committee model of majority voting for a classification task

Base models \(\{f_i(x)\} \) – binary classifiers with classification accuracy \(p \).

\[
y_i = \mathbb{1}(f_i(x) > 0), \quad \text{where } y_i \in \{0, 1\}
\]

Let \(S \) denote the number of votes for class 1,

\[
S = \sum_{i=1}^{M} y_i
\]

Accuracy of the committee model:

\[
Pr(S > M/2) = 1 - B(M/2, M, p)
\]

where \(B(k, n, p) \) is the cdf of the binomial distribution of \(k \) with parameters \(n \) and \(p \).
Background theories for ensemble learning (cont.)

Accuracy of the committee model

NB: strong assumption - each base model makes independent errors
Brief history of committee methods

1992 Stacking (Wolpert)
1994 Bagging (Brieman)
1995 AdaBoost (Freund & Schapire)
 Random Forests (Tin Kam Ho)
1997 Speech recognition with ROVER (Fiscus)
2001 Face detection with AdaBoost (Viola & Jones)

- Train each $f_i(x)$ on a training dataset D_i of size n - sampled from the original data set D uniformly and with replacement.
- Employ the same training algorithm over all $\{f_i(x)\}$

After Bootstrap aggregating (bagging) method of Wikimedia common
Boosting

\[F(x; \theta) = \sum_{m=1}^{M} \alpha_m f_m(x; \theta_i) \]

\[\min_{\theta, \alpha} L(F) = \min_{\theta, \alpha} \sum_{i=1}^{n} \ell(y_i, F(x_i; \theta)) \]

- \(f_m \in \{-1, +1\}, \ m = 1, \ldots, M \)
- No closed-form solutions normally
- Fit additive models sequentially

Adapted from boosted_regr_trees.ipynb
AdaBoost – adaptive boosting (Freund, Schapire 1995)

Training data set \(\{(x_1, y_1), \ldots, (x_n, y_n)\} \). Classifiers: \(\{f_1(x; \theta_1), \ldots, f_M(x; \theta_M)\} \)

Step 1 Initialise the weights \(w = (w_1, \ldots, w_n) \), where \(w_i = \frac{1}{n} \).

Step 2 For \(m = 1 \) to \(M \):

(a) Fit a classifier \(f_m(x) \) to the training data using \(w \).

(b) Compute: \(\text{err}_m = \frac{\sum_{i=1}^{n} w_i \mathbb{1}_{y_i \neq f_m(x_i)}}{\sum_{i=1}^{n} w_i} \)

(c) Compute: \(\alpha_m = \frac{1}{2} \ln \left(\frac{1 - \text{err}_m}{\text{err}_m} \right) \) \ldots cf. logit function

(d) Update the weights: \(w_i \leftarrow w_i e^{\alpha_m \mathbb{1}_{y_i \neq f_m(x_i)}} \), \(i = 1, \ldots, n \)

Step 3 Output the final model: \(F(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m f_m(x) \right) \)
AdaBoost: example

Weak learners: one-level decision trees (i.e. one nodes) – “decision stumps”.

From Figure 14.2 of C.Bishop’s *Pattern Recognition and Machine Learning*
Optimisation problem in AdaBoost

Assume we have trained $f_1(x), \ldots, f_{m-1}(x)$ and obtained $\alpha_1, \ldots, \alpha_{m-1}$.

\[
F_{m-1}(x) = \alpha_1 f_1(x) + \cdots + \alpha_{m-1} f_{m-1}(x)
\]

\[
F_m(x) = F_{m-1}(x) + \alpha_m f_m(x)
\]

We now want to train $f_m(x)$ and estimate α_m with the exponential loss function L_m defined below.

\[
L_m = \sum_{i=1}^{n} e^{-y_i F_m(x_i)} = \sum_{i=1}^{n} e(-y_i F_{m-1}(x_i) - y_i \alpha_m f_m(x))
\]

\[
= \sum_{i=1}^{n} w_{m,i} e(-y_i \alpha m f_m(x)), \quad \text{where } w_{m,i} = e(-y_i F_{m-1}(x_i))
\]

\[
= e^{-\alpha m} \sum_{y_i = f_m(x)} w_{m,i} + e^{\alpha m} \sum_{y_i \neq f_m(x)} w_{m,i}
\]

\[
= (e^{\alpha m} - e^{-\alpha m}) \sum_{y_i \neq f_m(x)} w_{m,i} + e^{-\alpha m} \sum_{i=1}^{n} w_{m,i} \quad \rightarrow \quad \min_{f_m} \sum_{y_i \neq f_m(x)} w_{m,i}
\]
Optimisation problem in AdaBoost (cont.)

We now would like to minimise \(L_m \) with respect to \(\alpha_m \)

\[
\frac{\partial L_m}{\partial \alpha_m} = \frac{\partial}{\partial \alpha_m} \left(e^{-\alpha_m} \sum_{y_i=f_m(x)} w_m,i + e^{\alpha_m} \sum_{y_i \neq f_m(x)} w_m,i \right)
\]

\[
= -e^{-\alpha_m} \sum_{y_i=f_m(x)} w_m,i + e^{\alpha_m} \sum_{y_i \neq f_m(x)} w_m,i = 0
\]

\[
e^{-\alpha_m} \sum_{y_i=f_m(x)} w_m,i = e^{\alpha_m} \sum_{y_i \neq f_m(x)} w_m,i
\]

Taking logarithm yields:

\[
-\alpha_m \ln \left(\sum_{y_i=f_m(x)} w_m,i \right) = \alpha_m \ln \left(\sum_{y_i \neq f_m(x)} w_m,i \right)
\]

Hence

\[
\alpha_m = \frac{1}{2} \ln \left(\frac{\sum_{y_i=f_m(x)} w_m,i}{\sum_{y_i \neq f_m(x)} w_m,i} \right) = \frac{1}{2} \ln \left(\frac{(\sum_{y_i=f_m(x)} w_m,i)/\sum_{i=1}^{n} w_{m,i}}{(\sum_{y_i \neq f_m(x)} w_m,i)/\sum_{i=1}^{n} w_{m,i}} \right) = \frac{1}{2} \ln \left(\frac{1 - \text{err}_m}{\text{err}_m} \right)
\]
Exponential loss in AdaBoost

\[\ell(y, F(x)) = e^{-yF(x)} \]

- Differentiable and an approximation of the ideal misclassification error function.
- Its sequential minimisation leads to the simple AdaBoost algorithm.
- It penalises large negative values of \(yF(x) \), putting a lot of weight on misclassified samples \(\rightarrow \) very sensitive to outliers (mislabelled examples)
Applications of boosting – face detection

How would you detect a face?

(R. Vaillant, C. Monrocq and Y. LeCun, 1994)

How does album software tag your friends?
Viola–Jones Face detection (2001)

- Face detector consists of linear combination of 'weak' classifiers that utilise five types of primitive features.
- The detector is trained on a training data set of a large number of positive and negative samples.
- Scan the input image with a sub-window (24 x 24 pixels) to detect a face.

Viola & Jones' paper: https://doi.org/10.1023/B:VISI.0000013087.49260.fb
A nice demo: http://vimeo.com/12774628
Other methods and software tools for boosting

• LogitBoost

\[L_m = \sum_{i=1}^{n} \log \left(1 + e^{-y_i F_m(x_i)} \right) \]

• Gradient boosting

• Extreme gradient boosting – dominating approach for small, tabular data sets
 ○ XGBoost (eXtreme Gradient Boosting) [Tianqi Chen & Carlos Guestrin, 2016] - a software tool