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Recap of statistical independence

• Two variables x and y are independent if

p(x , y) = p(x)p(y) (1)

• Equivalently, two variables x and y are independent if

p(x |y) = p(x) (2)

• We will use x ⊥ y to denote the independence of x and y .
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Independence of many variables

• If {x1, . . . , xn} ⊥ {y1, . . . , ym} then

p(x1, . . . , xn, y1, . . . , ym) = p(x1, . . . , xn)p(y1, . . . , ym) (3)

• Independence implies factorization.

• For example, suppose x ∈ X , y ∈ Y, z ∈ Z. If {x , y} ⊥ z ,

p(x , y , z) = p(x , y)p(z). (4)

• The original domain is X ×Y ×Z, but after factorization, the domain we need to
consider, X × Y and Z, is much smaller than X × Y × Z.
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Mutual independence vs pairwise independence

• The variables x1, x2, x3 are mutually independent if

p(x1, x2, x3) = p(x1)p(x2)p(x3). (5)

• If x1 ⊥ x2, x2 ⊥ x3, and x1 ⊥ x3, then x1, x2, x3 are pairwise independent.

• Mutual independence implies pairwise independence, but the converse is not
necessarily true.

4 / 17



Conditional independence

• The variables x and y are conditionally independent given z if

p(x , y |z) = p(x |z)p(y |z). (6)

• In this case, we write x ⊥ y | z .

• The sets of variables {x1, . . . , xn} and {y1, . . . , ym} are conditionally independent
given {z1, . . . , zt} if

p(x1, . . . , xn, y1, . . . , ym|z1, . . . , zt)
= p(x1, . . . , xn|z1, . . . , zt)p(y1, . . . , ym|z1, . . . , zt). (7)
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Testing independence

• By definition of marginalization,

p(x |z) =
∑
y

p(x , y |z) (8)

p(y |z) =
∑
x

p(x , y |z) (9)

• Check if

p(x , y |z) = p(x |z)p(y |z) (10)

for all x , y , and z .

• The above algorithm is slow. In general, testing independence is a hard problem.
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“Chain rule” of conditional probabilies

• Any joint probability p(x1, x2, . . . , xn) can be factorized in any order.

• For example,

p(x1, x2, . . . , xn) = p(x1)p(x2|x1)p(x3|x1, x2) · · · p(xn|x1, . . . , xn−1). (11)

• Or

p(x1, x2, . . . , xn) = p(xn)p(xn−1|xn)p(xn−2|xn−1, xn) · · · p(x1|x2, . . . , xn). (12)
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Applying independence

• Every Thursday there is a alarm testing (t).

• The alarm (a) goes off when there is fire (f ).

• If the alarm goes off, people in the building should meet at the front door (g) on
the ground floor.

• People gathers in front the building when there is a strike (s).
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Applying independence

• Alarm testing is independent of a fire (t ⊥ f ).

• A strike is independent of what happens in the building (s ⊥ {a, f , t}).

• People gathering is independent of fire and alarm testing if we know whether the
alarm goes off or whether there is a strike (g ⊥ {f , t} | s, a).

• Combining the above, we have

p(a, t, f , s, g) = p(t)p(f |t)p(a|f , t)p(s|a, f , t)p(g |s, a, f , t) (13)

= p(t)p(f )p(a|f , t)p(s)p(g |s, a) (14)

9 / 17



A (directed) graph representation

t f

sa

g

p(a, t, f , s, g) = p(t)p(f )p(a|f , t)p(s)p(g |s, a) (15)
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A (directed) graph representation

• Each vertex is a variable.

• A parent has edges pointing from itself to its children.

• The graph is directed and acyclic.

• A distribution factorizes according to a graph if

p(x1, x2, . . . , xn) =
n∏

i=1

p(xi |Pa(xi )). (16)

• Instead of describing independencies, the graph describes a factorization.
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Two objects

• Graph

• Probability distribution

– A probability distribution has a set of independencies.
– A probability distribution can factorize according to a graph.

• Can we read off independencies from a graph?
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Basic structures

chain x y z x ⊥ z | y

common cause x y z x ⊥ z | y

v-structure x y z
x ⊥ z

x ̸⊥ z | y
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chain x y z x ⊥ z | y

p(x , z |y) = p(x , y , z)

p(y)
=

p(x)p(y |x)p(z |y)
p(y)

= p(x |y)p(z |y) (17)
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common cause x y z x ⊥ z | y

p(x , z |y) = p(x , y , z)

p(y)
=

p(y)p(x |y)p(z |y)
p(y)

= p(x |y)p(z |y) (18)
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v-structure x y z
x ⊥ z

x ̸⊥ z | y

p(x , z) =
∑
y

p(x , y , z) =
∑
y

p(x)p(z)p(y |x , y) = p(x)p(z) (19)
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v-structure x y z
x ⊥ z

x ̸⊥ z | y

If x ⊥ z | y ,

p(x , z) =
∑
y

p(x , y , z) =
∑
y

p(y)p(x , z |y) =
∑
y

p(y)p(x |y)p(z |y)

=
∑
y

p(x |y)p(y , z). (20)

But

p(x , z) = p(x)p(z) =
∑
y

p(x)p(y , z). (21)

This can hold only when p(x |y) = p(x), but x and y are not independent; a
contradiction.
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