Machine Learning

Lecture 26: Statistical dependencies 2

Hao Tang

November 17, 2022

Descendants of v-structure

v-structure

The variables x and z are not independent if any descendant of y is given.

Separation

- The basic structure $x \rightarrow y \rightarrow z$ is blocked given y.
- The basic structure $x \leftarrow y \rightarrow z$ is blocked given y.
- The basic structure $x \rightarrow y \leftarrow z$ is blocked if y and its descendants are not given.
- A path is blocked if any basic structure along the path is blocked.
- Two variables are separated if all paths connecting the two variables are blocked.
- Two sets of variables X and Y are independent given a third set Z if all pairs of in $X \times Y$ are separated given Z.

Independencies in the two objects

- Separation on graph implies independence in the distribution that factorizes according to the graph.
- Technically, separation does not necessarily include all independencies in the distribution that factorizes according to the graph.

Naive Bayes

- Our task is to predict y given d features $x[1], x[2], \ldots, x[d]$.
- Suppose $x[1], \ldots, x[d]$ are mutually independent given y.

$$
\begin{equation*}
p(x[1], x[2], \ldots, x[d], y)=p(y) p(x[1], \ldots, x[d] \mid y)=p(y) \prod_{i=1}^{d} p(x[i] \mid y) \tag{1}
\end{equation*}
$$

- The conditional probability

$$
\begin{align*}
p(y \mid x[1], \ldots, x[d]) & =\frac{p(x[1], \ldots, x[d], y)}{p(x[1], \ldots, x[d])}=\frac{p(x[1], \ldots, x[d], y)}{\sum_{y^{\prime}} p\left(x[1], \ldots, x[d], y^{\prime}\right)} \tag{2}\\
& =\frac{p(y) \prod_{i=1}^{d} p(x[i] \mid y)}{\sum_{y^{\prime}} p\left(y^{\prime}\right) \prod_{i=1}^{d} p\left(x[i] \mid y^{\prime}\right)} \tag{3}
\end{align*}
$$

Naive Bayes

Naive Bayes

- When we have a data set $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, we train the naive Bayes classifier with the log loss

$$
\begin{equation*}
L=-\log \prod_{i=1}^{n} p\left(y_{i} \mid x_{i}[1], x_{i}[2], \ldots, x_{i}[d]\right) \tag{4}
\end{equation*}
$$

Hidden Markov Models

- For a sequence of observation $x_{1}, x_{2}, \ldots, x_{T}$, we assume there is a hidden sequence $z_{1}, z_{2}, \ldots, z_{T}$.
- The first assumption is that x_{t} is independent of everything else given z_{t}.
- The second assumption is that z_{t} is independent of $z_{1}, z_{2}, \ldots, z_{t-2}$ given z_{t}.

Hidden Markov Models

Hidden Markov Models

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{T}, z_{1}, \ldots, z_{T}\right)=p\left(z_{1}\right) p\left(x_{1} \mid z_{1}\right) \prod_{t=2}^{T} p\left(z_{t} \mid z_{t-1}\right) p\left(x_{t} \mid z_{t}\right) \tag{5}
\end{equation*}
$$

An undirected graph representation

- Each vertex is a variable.
- Each edge signals a dependency.
- The graph is undirected.

Separation on an undirected graph

- There are no child-parent relationships.
- A path is blocked if any vertex on the path is given.
- Two variables are separated if all paths between the two variables are blocked.
- Two sets of variables X and Y are independent given a third set Z if X and Y are separated given Z.

Factorization

- A distribution is said to factorize according to an undirected graph if

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{i=1}^{K} \phi_{i}\left(C_{i}\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
Z=\sum_{x_{1}, \ldots, x_{n}} \prod_{i=1}^{K} \phi_{i}\left(C_{i}\right) . \tag{7}
\end{equation*}
$$

- The value Z is called the partition function.
- Note that Z does not depend on any assignment of x_{1}, \ldots, x_{n}.

Factorization

- The set $C_{i} \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$ is a maximal clique.
- A clique is a set of fully connected vertices.
- A clique is maximal if we cannot include another vertex to make a new clique.
- The function $\phi_{i}: \mathcal{C}_{i} \rightarrow \mathbb{R}$ is called a factor, where \mathcal{C}_{i} is all the possible values that can be assigned to C_{i}.

Maximal clique

Maximal clique

$$
\begin{equation*}
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{1}{Z} \phi_{1}\left(x_{1}, x_{2}\right) \phi_{2}\left(x_{2}, x_{3}, x_{4}\right) \tag{8}
\end{equation*}
$$

Independencies in the two objects

- Similar to the directed case, separation on undirected graph implies independence in the distribution that factorizes according to the graph.
- Technically, separation does not necessarily include all independencies in the distribution that factorizes according to the graph.

Names

- A directed graph and a distribution that factorizes according to the graph is called a Bayesian network.
- An undirected graph and a distribution that factorizes according to the graph is called a Markov random field.
- An undirected graph and a distribution that factorizes according to the graph is typically called a Markov random field (MRF) when modeling joint distributions, but is typically called a conditional random field (CRF) when modeling conditional distributions.

Ising model

Linear-chain conditional random field

Linear-chain conditional random field

$$
\begin{equation*}
p\left(y_{1}, \ldots, y_{T} \mid x_{1}, \ldots, x_{T}\right)=\frac{1}{Z\left(x_{1}, \ldots, x_{T}\right)} \phi\left(x_{1}, y_{1}\right) \prod_{t=2}^{T} \phi\left(y_{t-1}, y_{t}\right) \phi\left(x_{t}, y_{t}\right) \tag{9}
\end{equation*}
$$

Independencies to factorization

- If a distribution matches all the independencies on a directed graph, then the distribution factorizes according to the graph.
- (Hammersley-Clifford) If a distribution matches all the independencies on an undirected graph and the distribution is strictly positive, then the distribution factorizes according to the graph.

