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Descendants of v-structure

v-structure x y z

...

d

The variables x and z are not independent if any descendant of y is given.
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Separation

• The basic structure x → y → z is blocked given y .

• The basic structure x ← y → z is blocked given y .

• The basic structure x → y ← z is blocked if y and its descendants are not given.

• A path is blocked if any basic structure along the path is blocked.

• Two variables are separated if all paths connecting the two variables are blocked.

• Two sets of variables X and Y are independent given a third set Z if all pairs of
in X × Y are separated given Z .
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Independencies in the two objects

• Separation on graph implies independence in the distribution that factorizes
according to the graph.

• Technically, separation does not necessarily include all independencies in the
distribution that factorizes according to the graph.
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Naive Bayes

• Our task is to predict y given d features x [1], x [2], . . . , x [d ].

• Suppose x [1], . . . , x [d ] are mutually independent given y .

p(x [1], x [2], . . . , x [d ], y) = p(y)p(x [1], . . . , x [d ]|y) = p(y)
d∏

i=1

p(x [i ]|y) (1)

• The conditional probability

p(y |x [1], . . . , x [d ]) = p(x [1], . . . , x [d ], y)

p(x [1], . . . , x [d ])
=

p(x [1], . . . , x [d ], y)∑
y ′ p(x [1], . . . , x [d ], y ′)

(2)

=
p(y)

∏d
i=1 p(x [i ]|y)∑

y ′ p(y ′)
∏d

i=1 p(x [i ]|y ′)
(3)
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Naive Bayes

y

x [1] x [2] · · · x [d ]
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Naive Bayes

• When we have a data set {(x1, y1), . . . , (xn, yn)}, we train the naive Bayes
classifier with the log loss

L = − log
n∏

i=1

p(yi |xi [1], xi [2], . . . , xi [d ]). (4)
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Hidden Markov Models

• For a sequence of observation x1, x2, . . . , xT , we assume there is a hidden
sequence z1, z2, . . . , zT .

• The first assumption is that xt is independent of everything else given zt .

• The second assumption is that zt is independent of z1, z2, . . . , zt−2 given zt .
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Hidden Markov Models

x1 x2 · · · xT

z1 z2 · · · zT

p(x1, . . . , xT , z1, . . . , zT ) = p(z1)p(x1|z1)
T∏
t=2

p(zt |zt−1)p(xt |zt) (5)
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An undirected graph representation

• Each vertex is a variable.

• Each edge signals a dependency.

• The graph is undirected.
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Separation on an undirected graph

• There are no child-parent relationships.

• A path is blocked if any vertex on the path is given.

• Two variables are separated if all paths between the two variables are blocked.

• Two sets of variables X and Y are independent given a third set Z if X and Y are
separated given Z .
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Factorization

• A distribution is said to factorize according to an undirected graph if

p(x1, . . . , xn) =
1

Z

K∏
i=1

ϕi (Ci ), (6)

where

Z =
∑

x1,...,xn

K∏
i=1

ϕi (Ci ). (7)

• The value Z is called the partition function.

• Note that Z does not depend on any assignment of x1, . . . , xn.
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Factorization

• The set Ci ⊆ {x1, . . . , xn} is a maximal clique.

• A clique is a set of fully connected vertices.

• A clique is maximal if we cannot include another vertex to make a new clique.

• The function ϕi : Ci → R is called a factor, where Ci is all the possible values that
can be assigned to Ci .

13 / 19



Maximal clique

x1

x2 x3

x4

p(x1, x2, x3, x4) =
1

Z
ϕ1(x1, x2)ϕ2(x2, x3, x4) (8)
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Independencies in the two objects

• Similar to the directed case, separation on undirected graph implies independence
in the distribution that factorizes according to the graph.

• Technically, separation does not necessarily include all independencies in the
distribution that factorizes according to the graph.
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Names

• A directed graph and a distribution that factorizes according to the graph is called
a Bayesian network.

• An undirected graph and a distribution that factorizes according to the graph is
called a Markov random field.

• An undirected graph and a distribution that factorizes according to the graph is
typically called a Markov random field (MRF) when modeling joint distributions,
but is typically called a conditional random field (CRF) when modeling conditional
distributions.
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Ising model
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Linear-chain conditional random field

x1 x2 · · · xT

y1 y2 · · · yT

p(y1, . . . , yT |x1, . . . , xT ) =
1

Z (x1, . . . , xT )
ϕ(x1, y1)

T∏
t=2

ϕ(yt−1, yt)ϕ(xt , yt) (9)
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Independencies to factorization

• If a distribution matches all the independencies on a directed graph, then the
distribution factorizes according to the graph.

• (Hammersley–Clifford) If a distribution matches all the independencies on an
undirected graph and the distribution is strictly positive, then the distribution
factorizes according to the graph.
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