Machine Learning
Lecture 28: Closing

Hao Tang

November 21, 2022
Critical thinking

• What are the assumptions?
 – What are the properties?
 – Survey?

• Can I make up assumptions?
 – What conclusions do I want?
 – Can I work backwards?
 – What is the ideal case?
 – What is the worst case?

• Where are the assumptions used?
Types of thinking

• Mathematical
 – What happens if we make these assumptions?

• Computational
 – What are the exact steps?

• Statistical
 – How many samples do we need?
Critical thinking

• Compare discriminative and generative approaches.
Critical thinking

• Compare discriminative and generative approaches.

• Compare logistic regression, perceptron, and support vector machines.
Critical thinking

• Compare discriminative and generative approaches.

• Compare logistic regression, perceptron, and support vector machines.

• Compare logistic regression and 6-layer neural network with 1024 units.
Machine learning

- What is machine learning?
Machine learning

- What is machine learning?
- When to use machine learning?
Machine learning

• What is machine learning?

• When to use machine learning?

• How to use machine learning?
Connections to other courses

• Foundations of Data Science (FDS)
• Applied Machine Learning (AML)
• Machine Learning and Pattern Recognition (MLPR)
• Probabilistic Modeling and Reasoning (PMR)
• Machine Learning Practical (MLP)
• Machine Learning Theory (MLT)
• Reinforcement learning (RL)
Connections to other courses

• Foundations of natural language processing (FNLP)
• Accelerated natural language processing (ANLP)
• Natural language understanding, generation, and machine translation (NLU+)
• Speech processing (in PPLS)
• Automatic speech recognition (ASR)
• Speech synthesis (in PPLS)
• Image and vision computing
• Advanced robotics
Tasks we haven’t talked about

• Information retrieval

• Recommendation system

• 3D reconstruction

• Text generation

• Protein folding
Evaluation we haven’t talked about

- Mean average precision
- Receiver operating characteristic (ROC) curve
- Word error rates (WER)
- Bilingual evaluation understudy (BLEU) score
- Mean opinion score (MOS)
Techniques we haven’t talked about

• More optimization
 – There are a lot of problems that cannot be solved with gradient descent.
Techniques we haven’t talked about

• More optimization
 – There are a lot of problems that cannot be solved with gradient descent.

• k nearest neighbor
 – A point is like its neighbors.
Techniques we haven’t talked about

• More optimization
 – There are a lot of problems that cannot be solved with gradient descent.

• k nearest neighbor
 – A point is like its neighbors.

• Decision trees
 – Decisions are based on conditional statements.
Techniques we haven’t talked about

• More optimization
 – There are a lot of problems that cannot be solved with gradient descent.

• k nearest neighbor
 – A point is like its neighbors.

• Decision trees
 – Decisions are based on conditional statements.

• Dimensionality reduction
 – Points in space have structures.
Techniques we haven’t talked about

• More optimization
 – There are a lot of problems that cannot be solved with gradient descent.

• k nearest neighbor
 – A point is like its neighbors.

• Decision trees
 – Decisions are based on conditional statements.

• Dimensionality reduction
 – Points in space have structures.

• Bayesian approaches
 – Beliefs are updated and marginalized.
Learning settings we haven’t talked about

• Active learning
 – What is the next sample that is most useful to learn?
Learning settings we haven’t talked about

• Active learning
 – What is the next sample that is most useful to learn?

• Online learning
 – What can we learn if we make decisions sequentially and can look back?
Learning settings we haven’t talked about

• Active learning
 – What is the next sample that is most useful to learn?

• Online learning
 – What can we learn if we make decisions sequentially and can look back?

• Semi-supervised learning
 – What do we do with unlabeled data?
Learning settings we haven’t talked about

• Active learning
 – What is the next sample that is most useful to learn?

• Online learning
 – What can we learn if we make decisions sequentially and can look back?

• Semi-supervised learning
 – What do we do with unlabeled data?

• Federated learning
 – Can learning be distributed?
Aspects

- Privacy
- Fairness
- Interpretability
Differentially private

A learning algorithm A is differentially private if for all data sets S and $S^{(i)}$ that differs in the i-th sample,

$$\mathbb{P}[A(S) \in G] < e^{\epsilon} \mathbb{P}[A(S^{(i)}) \in G] + \delta$$

for any subset $G \subseteq \mathcal{H}$ of hypothesis.
• An outcome Y should be independent of groups G. ($Y \perp G$)

• A score R should be independent of the groups G given the outcome Y. ($R \perp G|Y$)

• An outcome Y should be independent of the groups G given the score R. ($Y \perp G|R$)
Artificial Intelligence

- Building models of intelligence, not solving tasks
- Involving philosophy, psychology, linguistics, etc
What we have learned in this course

• Formalize a ML problem with math
• Read and understand ML theorems
• Turn ML algorithms into programs