
INFR10086 Machine Learning (MLG) Semester 1, 2022/23

Practice Exam

1. Discuss whether the following statements are true or false.

a) If learning hypothesis class A has a larger sample complexity than learning hypothe-
sis class B, then it requires more samples to find a model in A to achieve the same
generalization error as finding a model in B.

[6 marks]

b) If hypothesis class A has a larger VC dimension than hypothesis class B, then the
difference in training and test errors for models in class A is larger than those in class
B.

[6 marks]

c) If model A has a lower test error than model B, then model A has a lower generalization
error than model B.

[6 marks]

d) If a model has a zero training error and a non-zero test error, the model is overfitting.

[6 marks]

e) A model can be simultaneously underfitting and overfitting.

[6 marks]

2. In neural networks, batch normalization is a commonly used operation where a set of variables
are normalized before passed to subsequent computations. Formally, given a set (batch) of
real values x1, . . . , xB, batch normalization returns a set of real values y1, . . . , yB where

yi =
xi − µ

σ
(1)

and

µ =
1

B

B∑
i=1

xi σ =

√√√√ 1

B

B∑
i=1

x2i − µ2. (2)

If the loss function is L, we would like to compute the gradients through batch normalization.
We are given ∂L

∂yi
for i = 1, . . . , B.

a) Complete the following computation graph by drawing edges from input nodes to output
nodes for each operation in batch normalization. There are a total 6 edges.
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y1, . . . , yB

µ σ

x1, . . . , xB

[6 marks]

b) Derive ∂L
∂σ based on the computation graph.

[8 marks]

c) Derive ∂L
∂µ based on the computation graph. Note that σ depends on µ, and you do not

need to substitute ∂L
∂σ with the answer in a).

[8 marks]

d) Derive ∂L
∂xj

for a particular j ∈ {1, . . . , B}. Note that yj , µ, and σ depend on xj , and

you do not need to substitute ∂L
∂σ and ∂L

∂µ with the answers in a) anb b).

[8 marks]

3. Gaussian mixture models (GMM) and k-means share a lot of similarities.

Given a data set {x1, . . . , xn}, GMM assumes that there is a hidden variable zi ∈ {1, . . . ,K}
for every data point xi, where K is the number of Gaussian components. The mean for the
k-th component GMM is µk and its variance is σ2

k. The prior for choosing the k-th component

is vk ∈ [0, 1] where
∑K

i=1 vi = 1. Given the parameters, the distributions can be written as

p(x|z) = 1

(2π)d/2|Σz|1/2
exp

(
−1

2
(x− µz)

⊤Σ−1
z (x− µz)

)
(3)

p(z) = vz (4)

The variational lower bound of the log likelihood is

L =
n∑

i=1

[
Ez∼q(z|xi)[log p(xi|z)]−KL[q(z|xi)∥p(z)]

]
. (5)

The expectation-maximization optimizes L by iteratively updating GMMs with the update
rules

q(z|x)← p(z|x) (6)

µz ←
∑n

i=1 q(z|xi)xi∑n
i=1 q(z|xi)

for z = 1, . . . ,K (7)

Σz ←
∑n

i=1 q(z|xi)xix⊤i∑n
i=1 q(z|xi)

− µzµ
⊤
z for z = 1, . . . ,K (8)
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a) Show that L becomes
∑n

i=1 log p(xi) if we let q(z|x) = p(z|x).
[10 marks]

b) Show that L is concave in µz for z = 1, . . . ,K when q is fixed. Note that when q is fixed,
it no longer depends on µz.

[15 marks]

c) Use Bayes rule to derive q(z|x) is terms of p(x|z) and p(z).

[5 marks]

For k-means, we have k mean vectors µ1, . . . , µK . The update rule for k-means is

zi = argmin
k=1,...,K

∥xi − µk∥2 for i = 1, . . . , n (9)

µk =

∑n
i=1 1zi=kxi∑n
i=1 1zi=k

for k = 1, . . . ,K (10)

d) Ignoring the update of the variance, how would you change the GMM update rules so
that they become k-means?

[10 marks]
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