
INFR10086 Machine Learning (MLG) Semester 1, 2022/23

Tutorial 1: Vector-Matrix Calculus

In this tutorial, we will briefly review functions of vectors and matrices and their derivatives.
Because the notations can sometimes be confusing, we will put extra emphasis on types.

1 Type Theory

Types are used to specify the possible values a variable can take. For example, we can say that a
variable x is a real number, and this is often written as x ∈ R or x : R. For the purpose of this
course, types are synonymous to sets. For example, R is the set of all possible real numbers, and
it is also a type.

Other commonly used types are vectors and matrices, often written as Rd for d-dimensional
vectors, and Rm×n for m× n matrices.

Types of functions are defined by the input and output types. For example, X → Y is a function
type with input type X and output type Y. If a function f is of type X → Y or simply f : X → Y,
then we know f(x) is of type Y if x is of type X .

Sometimes a function can take a function as input and returns another function. In other words,
the input and output types can both be functions. For example, if we have T : (Rd → R) → (R →
R), for a function f : Rd → R, T (f) is a function R → R.

2 Derivatives

For a function f : R → R, the derivative of f at x is defined as

Df(x) = lim
h→0

f(x+ h)− f(x)

h
. (1)

Note that Df is a function, and Df(x) is the evaluation of Df at x. The term Df(x) should be
parsed as (Df)(x), not D(f(x)).

Discussion. What is the type of Df?

For multivariate functions f : Rd → R, the concept of derivative can be extended to directional
derivative. Since we only have a definition of derivative on the type R → R, we need to construct
a function of type R → R to make use of the definition of derivative. A simple approach is to define
g(t) = f(x+ tv) for a particular point x ∈ Rd and a particular direction v ∈ Rd. The function g is
R → R, and Dg is defined. We also do not care much about the derivative for different t’s, so we
can limit ourselves to the point x, i.e., when t = 0. This leads to the definition of the directional
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derivative. The derivative at x ∈ Rd along a direction v ∈ Rd is defined as

Dvf(x) = Dg(0) = lim
h→0

f(x+ (0 + h)v)− f(x+ 0v)

h
= lim

h→0

f(x+ hv)− f(x)

h
.

Discussion. What is the type of Dvf?

Recall that the standard basis {e1, e2, . . . , ed} for Rd is

e1 =



1
0
0
0
...
0


e2 =



0
1
0
0
...
0


e3 =



0
0
1
0
...
0


. . . . (2)

We will write

De1f =
∂f

∂x
De2f =

∂f

∂y
De3f =

∂f

∂z

Discussion. What is the type of a basis for Rd?

Discussion. What is the type of ∂f
∂x?

Since De1f is a function of Rd → R, it is perfectly valid to ask what the directional derivatives
of De1f are and write DvDe1f . For example, we will write

De2De1f =
∂2f

∂y∂x
De1De2f =

∂2f

∂x∂y
.

Discussion. We can treat Dv as an operator on functions. What is type of Dv?

3 Taylor Series

Let’s focus again on f : R → R. Suppose we would like to approximate f(x) locally at x = 0 with
an n-degree polynomial a0 + a1x+ a2x

2 + · · ·+ anx
n. We can write

f(x) ≈ a0 + a1x+ a2x
2 + · · ·+ anx

n. (3)

By repeatedly differentiating both sides, we have

f(0) = a0 f ′(0) = a1 f ′′(0) = (2!)a2 . . . f (n)(0) = (n!)an. (4)
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In other words,

a0 = f(0) a1 = f ′(0) a2 =
f ′′(0)

2!
. . . an =

f (n)(0)

n!
. (5)

If we plug the coefficients back, we can say that f(x) at x = 0 can be approximated by

f(0) + f ′(0)x+
f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn, (6)

a series known as the Taylor series. We can apply this approximation at any point x = a, and the
approximation would be

f(x) ≈
n∑

i=0

f (i)(a)

i!
(x− a)i, (7)

where we conveniently define f (0)(a) = f(a) and 0! = 1. Since the series is only an approximation,
to make it an actual equality, we can have

f(x) =

n∑
i=0

f (i)(a)

i!
(x− a)i + En(x), (8)

where En(x) is a remainder term that depends on n, the degree of the polynomial.
For example, we can write

f(x) = f(a) + f ′(a)(x− a) + E1(x). (9)

In words, we approximate f(x) at x = a locally with a linear function (literally a line) f(a) +
f ′(a)(x− a).

4 Gradients and Hessians

We can have approximation for multivariate functions of type Rd → R. The extension is again
based on a direction v at the point x. In particular, we hope to get

f(x+ v) = f(x) + Tx(v) + ∥v∥E1(x, v), (10)

where Tx(v) is a linear transformation and E1(x, v) → 0 when ∥v∥ → 0. Note that we only hope
that this happens. Let’s derive Tx(v) if this were to happen. We first substitute v = hu for another
vector u ∈ Rd and get

f(x+ hu) = f(x) + Tx(hu) + ∥hu∥E1(x, hu). (11)

We now intentionally rearrange the equation into

f(x+ hu)− f(x)

h
=

Tx(hu)

h
+

∥hu∥
h

E1(x, hu) (12)

= Tx(u) +
|h|
h
∥u∥E1(x, hu) (13)
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where we use the fact that Tx(u) is linear in u, i.e., Tx(hu) = hTx(u). If we let h → 0 on both
sides, because E(x, hu) → 0 when h → 0, we have

Duf(x) = Tx(u). (14)

Now we can express u as
∑d

i=1 uiei, a weighted sum of the standard basis. Because of linearity of
Tx, we have

Tx

(
d∑

i=1

uiei

)
=

d∑
i=1

uiTx(ei) =

d∑
i=1

uiDeif(x) (15)

=
[
De1f(x) De2f(x) · · · Dedf(x)

]

u1
u2
...
ud

 = ∇f(x)⊤u, (16)

where

∇f(x) =


De1f(x)
De2f(x)

...
Dedf(x)

 =


∂f
∂x1

(x)
∂f
∂x2

(x)
...

∂f
∂xd

(x)

 (17)

is called the gradient of f at x. The linear transformation Tx is also known as the total derivative
at x. In sum,

Duf(x) = Tx(u) = ∇f(x)⊤u. (18)

Discussion. What is the type of Tx?

Discussion. What is the type of ∇f?

Discussion. What is the type of ∇ if we treat it as an operator?

We can similarly derive

f(x+ v) = f(x) +∇f(x)⊤v +
1

2!
v⊤H(x)v + ∥v∥2E2(x, v), (19)

where E2(x, v) → 0 when ∥v∥ → 0 and

H(x) =


∂2f

∂x1∂x1
(x) ∂2f

∂x1∂x2
(x) · · · ∂2f

∂x1∂xd
(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x2∂x2

(x) · · · ∂2f
∂x2∂xd

(x)
...

...
...

∂2f
∂xd∂x1

(x) ∂2f
∂xd∂x2

(x) · · · ∂2f
∂xd∂xd

(x)

 (20)
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is called the Hessian of f at x. The Hessian of f is also sometimes written as ∇2f , though it
should never be interpreted as ∇(∇f). Deriving this is beyond the scope of this tutorial.

Discussion. What is the type of H or ∇2f?

Discussion. Is it type-correct to write ∇(∇f)? If so, what’s the type of ∇(∇f)?

5 Matrix Calculus

Writing gradients and Hessians the way they are written quickly becomes cumbersome when there
are many vectors and matrices involved. To simplify notation, when f : Rd → R, we define

∂f

∂x
=


∂f
∂x1
∂f
∂x2
...
∂f
∂xd

 , (21)

a derivative of f with respect to a vector.

Discussion. When f is of type Rd → R, what is the type of ∂f
∂x?

For example, we know that

∂x⊤a

∂xn
=

∂

∂xn

(
d∑

i=1

aixi

)
= an. (22)

Using the shorthand, we can now write

∂x⊤a

∂x
=


∂x⊤a
∂x1
∂x⊤a
∂x2
...

∂x⊤a
∂xd

 =


a1
a2
...
ad

 = a (23)

Discussion. We just wrote ∂x⊤a
∂x = a, but a is a vector. Shouldn’t ∂x⊤a

∂x be a function of
Rd → Rd?
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As another example, we know that

∂x⊤Ax

∂xn
=

∂

∂xn

 d∑
i=1

d∑
j=1

xixjAij

 = 2Annxn +
∑
j ̸=n

xjAnj +
∑
i ̸=n

xiAin + 0 (24)

=
d∑

j=1

xjAnj +
d∑

i=1

xiAin = An·x+A⊤
·nx, (25)

where A·n is the n-th column of A and An· is the n-th row of A. Using the shorthand, we can now
write

∂x⊤Ax

∂x
=


∂x⊤Ax
∂x1

∂x⊤Ax
∂x2
...

∂x⊤Ax
∂xd

 =


A1·x+A⊤

·1x
A2·x+A⊤

·2x
...

Ad·x+A⊤
·dx

 = (A+A⊤)x (26)

We can also extend the notation to derivatives with respect to a matrix. Specifically, we define

∂f

∂X
=


∂f
∂x11

∂f
∂x12

· · · ∂f
∂x1d

∂f
∂x21

∂f
∂x22

· · · ∂f
∂x2d

...
...

...
∂f
∂xd1

∂f
∂xd2

· · · ∂f
∂xdd

 . (27)

Since

∂a⊤Xb

∂xmn
=

∂

∂xmn

 d∑
i=1

d∑
j=1

aibjXij

 = ambn, (28)

we can now write

∂a⊤Xb

∂X
=


∂a⊤Xb
∂x11

∂a⊤Xb
∂x12

· · · ∂a⊤Xb
∂x1d

∂a⊤Xb
∂x21

∂a⊤Xb
∂x22

· · · ∂a⊤Xb
∂x2d

...
...

...
∂a⊤Xb
∂xd1

∂a⊤Xb
∂xd2

· · · ∂a⊤Xb
∂xdd

 =


a1b1 a1b2 · · · a1bd
a2b1 a2b2 · · · a2bd
...

...
...

adb1 adb2 · · · adbd

 = ab⊤. (29)
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