INFR10086 Machine Learning (MLG)

Semester 1, 2022/23

Tutorial 2: Curve Fitting

In this tutorial, we will write a program that can fit curves, one of the simplest machine learning algorithm.

1 Finding the Dissociation Constant

One of your biochemistry friend approaches you with the data in Table 1. We are looking for a way to find the dissociation constant K_D for hemoglobin binding to oxygen. We know that the disassociation constant K_D appears in the equation¹

$$\theta = \frac{[L]^n}{K_D + [L]^n},\tag{1}$$

where θ is the amount of saturation and [L] is the concentration. We know the constant n is $2.49.^2$ We also know that K_D should be positive, and want to find K_D given the data in Table 1.³

Table 1: The percentage of hemoglobin bound to oxygen (or the amount of saturation) under different oxygen concentration (measured in kPa).

O_2 concentration	saturation
1.333	0.425
1.9995	0.63
2.666	0.755
3.3325	0.844
3.999	0.91
4.6655	0.94
6.665	0.96
13.33	0.99

¹This equation is called the Hill equation.

 $^{^2}$ The constant n is also known as Hill constant.

³These entries are actually taken from Table III in Hill's 1910 paper, "The possible effects of the aggregation of the molecules of hemoglobin on its dissociation curves," J. Physiol. 40 (Suppl).

2 Abstraction

Without knowing all the details of how oxygen binds to hemoglobin, we can abstract away all the chemistry and focus on the problem itself. Equation (1) can be written as

$$y = \frac{x^n}{K + x^n},\tag{2}$$

where x is the O_2 concentration and y is the saturation. We want to find K such that Equation (1) gives the best fit for Table 1, so this is a curve-fitting problem.

As for many curve-fitting problems, mean-squared error should be a good loss for finding the best fit. The loss for this particular curve is

$$L = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{x_i^n}{K + x_i^n} - y_i \right)^2.$$
 (3)

Implementation. Write a script 1) to plot the points in Table 1 and 2) to overlay a few curves with different K's on top of the points.

Implementation. Write a script to print out the loss value given a particular K.

Discussion. Do you think the curves fit better when they have lower mean-squared errors?

Discussion. In what range do you think the optimal K lies?

3 Checking for Convexity

Before we try any algorithm on this optimization problem, we always want to ask whether there is a single unique optimal solution, or if there exists multiple solutions. If we can show that L is convex in K, then we know that the function has a unique minimum.

Recall that there are several approaches to check whether a function is convex. The loss L is complicated enough that we cannot check its convexity simply using the definition. We will take another approach instead, checking whether the second derivative with respect to K is positive.

The first derivative of the loss function is

$$\frac{\partial L}{\partial K} = \frac{1}{N} \sum_{i=1}^{N} 2\left(\frac{x_i^n}{K + x_i^n} - y_i\right) \left(\frac{x_i^n}{K + x_i^n} \frac{-1}{K + x_i^n}\right). \tag{4}$$

Given the complexity of the first derivative, deriving the second derivative is going to be a challenge, not to mention proving that it is positive. We will write a program instead to help us decide whether the loss function is convex in K. If the first derivative is monotonically increasing as K increases, then the second derivative should be positive.

Table 2: A sequence of values tried when performing a binary search between 0 and 10.

K	$\frac{\partial L}{\partial K}$	L
0	-0.0951	0.0707
10	0.00601	0.032
5	0.00406	0.0047
2.5	-0.00355	0.00145
3.75	0.00177	0.000835
3.125	-0.000296	0.00033

Implementation. Write a script to print the first derivative of L at $\{-5, -4, \ldots, -1, 0, 1, \ldots, 9, 10\}$.

Discussion. Based on the output, do you think the loss is convex?

Discussion. Do we have sufficient evidence that L convex in K when $K \geq 0$?

4 Binary Search

Since this is a one-dimensional problem, we have the luxury to manually try a few values of K and choose the best one. We obviously do not want to do random search. A simple strategy is to do binary search. Similar to searching a number in a sorted array, we split a segment in the middle, and choose the one that might contain the optimal value. To choose whether we want to move right (the larger side) or left (the smaller side), we can look at the first derivative. If the first derivative is negative, that means the optimal value is on the right; if the first derivative is positive, that means the optimal value is on the left.

Discussion. Why do we want to move left (to the smaller side) when we see a positive first derivative?

Iterating this process a few times is enough to narrow down the optimal K. For example, if we start from the range [0, 10], we end up with the sequence in Table 2. Based on the search, we can guess that the optimal value is between 3.125 and 3.75.

5 Optimization

Another option is to do gradient descent on the loss function L. Recall that gradient descent is a sequence of updates

$$K_t = K_{t-1} - \eta \frac{\partial L}{\partial K}(K_{t-1}), \tag{5}$$

where η is the step size.

Implementation. Write a script that does 20 gradient updates and plot the loss values and the sequence K_1, K_2, \ldots, K_{20} against the number of updates.

Discussion. What is a reasonable K_0 ?

Discussion. What is a reasonable η ?

The results of gradient descent should look like Figure 1 and 2. The loss is close to zero after only a few updates.⁴

Implementation. Use the script you wrote earlier to plot the curve with the best K obtained from gradient descent.

Discussion. After going through these experiments, what dissociation constant would you report to your friend?

⁴Most biochemists these days would use GraphPad Prism https://www.graphpad.com/scientific-software/prism/prism/ to find these constants.

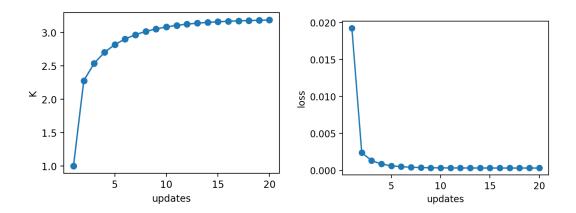


Figure 1: The result of gradient descent when starting from K=1 with $\eta=50$.

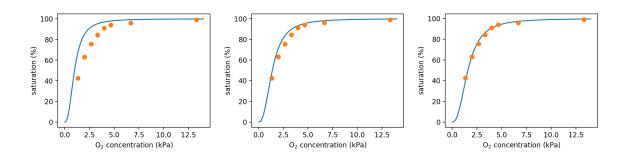


Figure 2: Snapshots of the curves during gradient descent. *Left:* The curve at initialization before gradient descent. *Middle:* The curve after 1 gradient update. *Right:* The final curve after 20 gradient updates.