
INFR10086 Machine Learning (MLG) Semester 2, 2023/4

Coursework

Questions

1. In this question, we are going to work out the convergence rate of gradient descent on a
particular family of functions.

(a) Show that if f is convex, then

f(y)− f(x)−∇f(x)⊤(y − x) ≤ (∇f(y)−∇f(x))⊤(y − x) (1)

for any x and y.

[2 marks]

By the definition of convexity, f(x) ≥ f(y) +∇f(y)⊤(x − y). Apply this to f(y)
in the question,

f(y)− f(x)−∇f(x)⊤(y − x) ≤ f(x)−∇f(y)⊤(x− y)− f(x)−∇f(x)⊤(y − x)

≤ (∇f(y)−∇f(x))⊤(y − x)

Remind yourself what Cauchy–Schwarz is. Show that if f is convex, then

f(y)− f(x)−∇f(x)⊤(y − x) ≤ ∥∇f(y)−∇f(x)∥2∥y − x∥2 (2)

for any x and y.

[2 marks]

By Cauchy–Schwarz,

(∇f(y)−∇f(x))⊤(y − x) ≤ ∥∇f(y)−∇f(x)∥2∥y − x∥2

A function f is said to be L-smooth if

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2 (3)

for all x and y. Using the above, show that if f is convex and L-smooth, then

f(y) ≤ f(x) +∇f(x)⊤(y − x) + L∥x− y∥22 (4)

1

for any x and y.

[2 marks]

The desired inequality follows from the L-smooth assumption.

f(y)− f(x)−∇f(x)⊤(y − x) ≤ f(x)−∇f(y)⊤(x− y)− f(x)−∇f(x)⊤(y − x)

≤ (∇f(y)−∇f(x))⊤(y − x)

≤ ∥∇f(y)−∇f(x)∥2∥y − x∥2
≤ L∥y − x∥22

We can conclude that if f is convex and L-smooth, you can always find a parabola that
bounds the function from above.

(b) Let’s consider the case where we do gradient descent on a convex and L-smooth function
f . The gradient descent algorithm can be summarized as

xt = xt−1 − ηt∇f(xt−1) (5)

for t = 1, . . . , T . We know that if f is convex and L-smooth, then

f(y) ≤ f(x) +∇f(x)⊤(y − x) + L∥x− y∥22 (6)

for any x and y. Plug in x = xt−1 and y = xt to the above and show that

f(xt−1)− f(xt) ≥ ηt(1− Lηt)∥∇f(xt−1)∥22. (7)

[2 marks]

Following the above instruction, we have

f(xt) ≤ f(xt−1) +∇f(xt−1)
⊤(xt − xt−1) + L∥xt − xt−1∥22

≤ f(xt−1) +∇f(xt−1)
⊤(−ηt∇f(xt−1)) + L∥ηt∇f(xt−1)∥22

≤ f(xt−1) + (Lηt − 1)ηt∥∇f(xt−1)∥22.

Consider g(s) = s(1−Ls). This is a concave1 parabola. Show that g has a maximum of
1
4L when s = 1

2L , and g is 0 when s = 1
L .

[2 marks]

1A function f is concave if −f is convex.

2

By completing the square, we have

g(s) = −Ls2 + s = −L

(
s− 1

2L

)2

+
1

4L
.

This shows that g has a maximum of 1
4L at 1

2L . It’s also clear that g is 0 when
s = 1

L .

Using the above results, we can choose ηt =
1
2L and conclude

f(xt−1)− f(xt) ≥
1

4L
∥∇f(xt−1)∥22 ≥ 0. (8)

In other words, if we know the function is convex and L-smooth and we do gradient
descent with a step size of 1

2L , we are guaranteed to decrease the objective after every
gradient update.

(c) A function f is said to be µ-strongly convex if

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
µ

2
∥y − x∥22 (9)

for any x and y. Note the direction of the inequality. Compared to L-smooth functions
that have parabolas bounded from above, strongly convex functions have parabolas
bounded from below.

Show that, for a particular x, the quadratic function on the right hand side

g(z) = f(x) +∇f(x)⊤(z − x) +
µ

2
∥z − x∥22 (10)

is minimized when z = x− 1
µ∇f(x).

[2 marks]

By taking the gradient of g with respect to z, we have

∇zg(z) = ∇f(x) +
µ

2
(2z − 2x).

The minimum can be found by solving ∇zg(z) = 0.

Based on the result above, show that

f(y) ≥ g(y) ≥ min
z

g(z) = f(x)− 1

2µ
∥∇f(x)∥22, (11)

for any x and y.

[2 marks]

3

Plugging in x− 1
µ∇f(x), we have

f(y) ≥ f(x) +∇f(x)⊤
(
− 1

µ
∇f(x)

)
+

µ

2

∥∥∥∥ 1µ∇f(x)

∥∥∥∥2
2

= f(x)− 1

2µ
∥∇f(x)∥22.

Now choose y = x∗ where x∗ is the minimizer of f , and conclude that

f(x)− f(x∗) ≤ 1

2µ
∥∇f(x)∥22. (12)

[2 marks]

Plugging in x∗, we have

f(x∗) ≥ f(x)− 1

2µ
∥∇f(x)∥22.

In other words, if a function is strongly convex, we know how far the optimal solution
is just by looking at the norm of the gradient.

(d) We know that if we perform gradient descent on a L-smooth function f then

f(xt) ≤ f(xt−1)−
1

4L
∥∇f(xt−1)∥22. (13)

We can subtract f(x∗) from both sides to get

f(xt)− f(x∗) ≤ f(xt−1)− f(x∗)− 1

4L
∥∇f(xt−1)∥22. (14)

If we further assume that f is µ-strongly convex, show that

f(xt)− f(x∗) ≤ f(xt−1)− f(x∗) +
µ

2L
(f(x∗)− f(xt−1)) (15)

=
(
1− µ

2L

)
(f(xt−1)− f(x∗)). (16)

[2 marks]

4

Using the fact that f(x)− f(x∗) ≤ 1
2µ∥∇f(x)∥22, we get

f(xt)− f(x∗) ≤ f(xt−1)− f(x∗)− 1

4L
∥∇f(xt−1)∥22

≤ f(xt−1)− f(x∗)− 1

4L
2µ(f(x∗)− f(xt−1))

≤ f(xt−1)− f(x∗) +
µ

2L
(f(x∗)− f(xt−1))

=
(
1− µ

2L

)
(f(xt−1)− f(x∗)).

Apply this result repeatedly, and conclude that

f(xt)− f(x∗) ≤
(
1− µ

2L

)t
(f(x0)− f(x∗)). (17)

[2 marks]

Using the fact that f(x)− f(x∗) ≤ 1
2µ∥∇f(x)∥22, we get

f(xt)− f(x∗) ≤
(
1− µ

2L

)
(f(xt−1)− f(x∗))

≤
(
1− µ

2L

)2
(f(xt−2)− f(x∗))

≤
(
1− µ

2L

)t
(f(x0)− f(x∗)).

In sum, this is the convergence rate if we run gradient descent with a constant step size
of 1

2L on an L-smooth, µ-strongly convex function.

Is the convergence quadratic, linear, or sublinear?

[2 marks]

Based on L-smoothness and µ-strongly convex, we have µ/2 < L; otherwise, the
upper bound would be below the lower bound, a contradiction. In sum, we have

f(xt)− f(x∗) ≤ rt(f(x0)− f(x∗)),

for some 0 < r < 1. The convergence is linear.

2. In this question, we are going to study the properties of hinge loss.

(a) Show that

max(a+ b, c+ d) ≤ max(a, c) + max(b, d) (18)

5

for any a, b, c, and d.

[2 marks]

Because

a ≤ max(a, c)

b ≤ max(b, d)

we have a+ b ≤ max(a, c) + max(b, d). Similarly, because

c ≤ max(a, c)

d ≤ max(b, d)

we have c+ d ≤ max(a, c) + max(b, d). Given that max(a, c) + max(b, d) is larger
than both a+ b and c+ d, we arrive at max(a+ b, c+ d) ≤ max(a, c) +max(b, d).

Use the above result and show that if f and g are both convex, then

h(x) = max(f(x), g(x)) (19)

is also convex.

[2 marks]

Based on the convextiy of f and g, we have

h(αx+ (1− α)y) = max(f(αx+ (1− α)y), g(αx+ (1− α)y))

≤ max(αf(x) + (1− α)f(y), αg(x) + (1− α)g(y))

≤ max(αf(x), αg(x)) + max((1− α)f(y), (1− α)g(y))

≤ αmax(f(x), g(x)) + (1− α)max(f(y), g(y))

≤ αh(x) + (1− α)h(y).

(b) In class, we have talked about the hinge loss for binary classification

ℓhinge(w;x, y) = max(0, 1− yw⊤x) (20)

where (x, y) is a sample and y ∈ {+1,−1}. Use the result above and show that the hinge
loss is convex in w.

[2 marks]

The first term in the max 0 is a constant and convex in w. The second term
1− yw⊤x is affine in w, so it is also convex in w. Based on the result above, the
maximum of the two is convex in w.

6

(c) Recall that the zero-one loss is

ℓ01(w;x, y) = 1yw⊤x<0 (21)

where (x, y) is a sample and y ∈ {+1,−1}. Show that the hinge loss is always an upper
bound of the zero-one loss. (Hint: Enumerate the possible values of y and the possible
signs of w⊤x.)

[2 marks]

When yw⊤x < 0, the hinge loss is 1 − yw⊤x and is larger than 1. The zero-one
loss is 1, so the hinge loss is an upper bound in this case. When yw⊤x ≥ 0, the
zero-one loss is 0. Regardless of how hinge loss behaves, it is bounded by 0 because
of max(0, ·), so the hinge loss is the upper bound of zero-one loss in both cases.

(d) Show that if f is convex and g is µ-strongly convex, then

h(x) = f(x) + λg(x) (22)

is λµ-strongly convex for λ > 0. (Hint: Use the definition of convex and strongly convex
functions.)

[2 marks]

Based on the definition, we have

f(x) ≥ f(y) +∇f(y)⊤(x− y)

g(x) ≥ g(y) +∇g(y)⊤(x− y) +
µ

2
∥x− y∥22

We can combine the two inequality to get

f(x) + λg(x) ≥ f(y) + λg(y) + (∇f(y) + λ∇g(y))⊤(x− y) +
λµ

2
∥x− y∥22,

which in turn gives

h(x) ≥ h(y) +∇h(y)⊤(x− y) +
λµ

2
∥x− y∥22.

Show that g(x) = 1
2∥x∥

2
2 is 1-strongly convex.

[2 marks]

7

Since

1

2
∥x∥22 − x⊤y +

1

2
∥y∥22 =

1

2
∥x− y∥22,

we can arrange the terms to have

g(x) =
1

2
∥x∥22 = −1

2
∥y∥22 + x⊤y +

1

2
∥x− y∥22

=
1

2
∥y∥22 + y⊤(x− y) +

1

2
∥x− y∥22

= g(y) +∇g(y)⊤(x− y) +
1

2
∥x− y∥22.

If we optimize the loss function

1

n

n∑
i=1

ℓhinge(w;xi, yi) +
λ

2
∥w∥22 (23)

on a data set {(x1, y1), . . . , (xn, yn)}, conclude that this loss function is λ-strongly convex.

[2 marks]

Since the hinge loss is convex, the non-negative sum of hinge losses are also convex.
Adding λ

2∥w∥
2
2, which is λ-strongly convex, gives a λ-strongly convex function.

Compare the above objective to support vector machines, and convince yourself that
support vector machines are optimizing the hinge loss.

3. MNIST is a data set consisting of hand-written digits. In this question, we are going to
implement a linear classifier using only numpy. You are not allowed to use any packages
other than numpy, matplotlib, and those in the Python standard library.

Download the tar ball from https://homepages.inf.ed.ac.uk/htang2/mlg2023/mnist.

tar.gz. It includes the data set, and a file mnist.py to help you load the data set.

To get full marks for this question, you need to paste all your code and plots in a PDF and
submit that with your answers to other questions.

(a) Use the snippet below to load the training set.

import mnist

images = mnist.load_images('train-images-idx3-ubyte')

Since each image is 28 × 28, we can linearize every image to a 784-dimensional vector.
Simply use numpy.reshape to reshape the 28 × 28 matrix to a 784-dimensional vector.
Write a script to find the mean of the whole data set. Reshape the mean vector back
to a 28× 28 matrix and use pyplot.imshow to plot the mean “image”. What does the
mean image look like?

8

https://homepages.inf.ed.ac.uk/htang2/mlg2023/mnist.tar.gz
https://homepages.inf.ed.ac.uk/htang2/mlg2023/mnist.tar.gz

[4 marks]

The mean image looks like the following.

The code is listed at the end of the document.

(b) Remind yourself about the log loss

ℓ(w;x, y) = − log p(y|x) = − log
exp(w⊤

y x)∑
y′∈{0,...,9} exp(w

⊤
y′x)

(24)

= −w⊤
y x+ log

∑
y′∈{0,...,9}

exp(w⊤
y′x) (25)

for multiclass classification. Note that you will need a weight vector for each label. In
other words, we need weight vectors w0, . . . , w9 for labels 0, . . . 9. What is the gradient
∇wỹℓ?

[2 marks]

The gradient of log loss is

∇wỹℓ = −1y=ỹx+
exp(w⊤

ỹ x)∑
y′∈{0,...,9} exp(w

⊤
y′x)

x.

Mind the different y’s. The symbol y is used for the ground truth label, the symbol y′

is used in the sum, and the symbol ỹ is some label that we take gradient of.

(c) Use the snippet below to load the labels of the data set.

import mnist

labels = mnist.load_labels('train-labels-idx1-ubyte')

Implement stochastic gradient descent (SGD) to optimize the log loss above with a batch
size of 1. Recall that an epoch is a pass over the data set. The training set have 60,000
samples, so one epoch should give you 60,000 gradient updates. Print the loss value
on a sample before the gradient update. Run SGD for 10 epochs. Average the losses

9

printed, and you should end up with 10 average loss values. It is a good practice to save
a classifier after every epoch, in case you want to continue from where you left off.

Plot the losses where the x-axis is the number of epochs and the y-axis is the averaged
loss values per epoch. Repeat this process for different step sizes and overlay the loss
curves on top of each other.

What plot do you get after overlaying the loss curves? What is the best step size that
leads to the lowest loss values?

[6 marks]

Depending on the choice of step sizes, we get different loss curves.

The code is listed at the end of the document.

Write a script to load the two files t10k-images-idx3-ubyte and t10k-labels-idx1-ubyte.
Implement

ŷ = argmax
y∈{0,...,9}

w⊤
y x (26)

for prediction, and measure the zero-one loss of the classifiers you have. What is the
zero-one loss that you get for your classifiers?

[2 marks]

10

The best zero-one loss 8.1% is achieved with a step size of 10−4 at epoch 10.

The code is listed at the end of the document.

11

import array

import sys

import numpy

def load_images(filename):

f = open(filename, 'rb')

sig = f.read(4)

dim1 = int.from_bytes(f.read(4), byteorder='big', signed=False)

dim2 = int.from_bytes(f.read(4), byteorder='big', signed=False)

dim3 = int.from_bytes(f.read(4), byteorder='big', signed=False)

data = numpy.array(array.array('B', f.read()), dtype=numpy.dtype(float))

result = data.reshape(dim1, dim2, dim3)

f.close()

return result

def load_labels(filename):

f = open(filename, 'rb')

sig = f.read(4)

dim1 = int.from_bytes(f.read(4), byteorder='big', signed=False)

result = numpy.array(array.array('B', f.read()), dtype=numpy.dtype(float))

f.close()

return result

Listing 1: File mnist.py.

12

import numpy

import math

def log_loss(w, x, y, K):

scores = [numpy.dot(w[i], x) for i in range(K)]

m = max(enumerate(scores), key=lambda t: t[1])

logZ = scores[m[0]] + math.log(sum(math.exp(s - scores[m[0]]) for s in scores))

return -scores[y] + logZ

def grad_log_loss(w, x, y, K):

scores = [numpy.dot(w[i], x) for i in range(K)]

m = max(enumerate(scores), key=lambda t: t[1])

logZ = scores[m[0]] + math.log(sum(math.exp(s - scores[m[0]]) for s in scores))

grad = numpy.zeros_like(w)

for i in range(K):

grad[i] = ((-1.0 if i == y else 0.0) + math.exp(scores[i] - logZ)) * x

return grad

def load_mean_var(filename):

f = open(filename)

mean = numpy.array([float(e) for e in f.readline()[1:-2].split(',')])

var_ = numpy.array([float(e) for e in f.readline()[1:-2].split(',')])

f.close()

return mean, var_

def load_param(filename):

f = open(filename)

w = []

for i in range(10):

w.append([float(e) for e in f.readline()[1:-2].split(',')])

f.close()

return numpy.array(w)

def save_param(w, filename):

f = open(filename, 'w')

for v in w:

print(list(v), file=f)

f.close()

Listing 2: File linear.py

13

#!/usr/bin/env python3

import sys

import math

import numpy

import mnist

import linear

param = sys.argv[1]

param_out = sys.argv[2]

step_size = 5e-3

images = mnist.load_images('train-images-idx3-ubyte')

labels = mnist.load_labels('train-labels-idx1-ubyte')

mean, var_ = linear.load_mean_var('train.mean-var')

var_[var_ == 0.0] = 1.0

w = linear.load_param(param)

sample = 1

for img, lab in zip(images, labels):

img = img.reshape(28 * 28)

img = (img - mean) / numpy.sqrt(var_)

loss = linear.log_loss(w, img, int(lab), 10)

grad = linear.grad_log_loss(w, img, int(lab), 10)

w -= grad * step_size

print('sample: {}'.format(sample))

print('loss: {:.6}'.format(loss))

print('grad norm: {:.6}'.format(numpy.linalg.norm(w)))

print()

sample += 1

linear.save_param(w, param_out)

Listing 3: File train-linear.py

14

#!/usr/bin/env python3

import sys

import math

import numpy

import mnist

import linear

param = sys.argv[1]

images = mnist.load_images('t10k-images-idx3-ubyte')

labels = mnist.load_labels('t10k-labels-idx1-ubyte')

mean, var_ = linear.load_mean_var('train.mean-var')

var_[var_ == 0.0] = 1.0

w = linear.load_param(param)

log_loss = 0

zero_one_loss = 0

K = 10

samples = 1

for img, lab in zip(images, labels):

img = img.reshape(28 * 28)

img = (img - mean) / numpy.sqrt(var_)

loss = linear.log_loss(w, img, int(lab), 10)

m = max(enumerate([numpy.dot(w[i], img) for i in range(K)]), key=lambda t: t[1])

zero_one_loss += (1.0 if m[0] != lab else 0.0)

log_loss += loss

print('sample: {}'.format(samples))

print('log loss: {:.6}'.format(loss))

print('zero-one loss: {:.6}'.format(1.0 if m[0] != lab else 0.0))

print('')

samples += 1

print('avg log loss: {:.6}'.format(log_loss / samples))

print('avg zero-one loss: {:.6}'.format(zero_one_loss / samples))

Listing 4: File eval-linear.py

15

#!/usr/bin/env python3

import mnist

import numpy

images = mnist.load_images('train-images-idx3-ubyte')

ex = numpy.zeros(28 * 28)

ex2 = numpy.zeros(28 * 28)

samples = 0

for img in images:

img = img.reshape(28 * 28)

ex += img

ex2 += img * img

samples +=1

mean = ex / samples

print(list(mean))

print(list(ex2 / samples - mean ** 2))

print(samples)

Listing 5: File mean-var.py

16

