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Definition 1. A vector is an element in R that consists of d coordinates. For a vector z,
we write its d coordinates as (x1,xg,...,2q).

Definition 2. The multiplication of a vector x by a scalar a € R and the addition of two
vectors u and v are defined as

e ar = (axy,axs,...,axq)

o u+v=(up +v1,...,uq+vq)

e The notation u — v is a more convenient way of writing u + (—1)w.

Definition 3. The dot product between two vectors v and v is defined as

d
w'v=wugvy + - 4 ugug = z:uzvZ (1)
=1

Example 1. The dot product satisfies the following properties.

e bilinearity

T

— (au)"v = a(u"v) = u' (av) for any two vectors u and v and a scalar a € R.

— (u+v)"w =u"w+ v w for any three vectors u, v, and w.

— w'(u+v) =w u+wv for any three vectors u, v, and w.

e commutativity

—u'v=v"u for any two vectors u and v.

e These properties defines a inner product. We can show that dot product satifies all the above
properties and, hence, is an inner product.

T

e The inner product of u and v is written as (u,v). The notation u'v is only for the dot

product.

e The proofs of these properties are left as exercises.



Definition 4. The ¢5 norm of a vector v is defined as

||UH2:\/UTU:\/U%+"'—|—U§. (2)

e There are other norms. For example, the ¢ norm ||v|; = Z?Zl |vg .

Example 2. In a two-dimensional space, a vector x = (x1,x2) has an f» norm |z|s =
V2% + 23, Intuitively, the ¢5 norm is the length of a vector, and this is true even in d-
dimensional spaces.

Example 3. The {5 norm satisfies the following properties
e nonnegativity
— |lu|| > 0 for any vector w.
o |lau|| = |a|||u|| for any scalar a € R and a vector u
e |lul]| = 0 only if the vector u is 0.
e triangle inequality

— |lul| + ||v]] > |lu+ v|| for any two vectors u and v.

e These properties defines a norm, so the subscript 2 is intentionally left out. We can show

that the /5 norm satisfies the above properties and, hence, is a norm.

e In fact, if we have an inner product, we can show that y/(z, ) is a norm. We can conveniently

write ||z|| = v/ (z, ).

e The proofs of these properties are left as exercises.

Example 4. Show that

o+ o113 =l + 2070 + [Jol}3 3)
lu+vl|3 = (u+0)" (utv) definition of ¢ norm (4)
=(u+v) ut (utv) v bilinearity (5)
=vu+vutuv+olo bilinearity (6)
= [Jull3 + 2u"v + ||Jv||3 commutativity and definition of /3 norm  (7)

Example 5. Show that v/||v||2 has an ¢3 norm of 1 for any vector v # 0.
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Example 6. If two vectors u and v have an angle # between them, show that

[vfl2 = 1. (8)
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Based on the law of cosine (the figure above), we have
lo = wll3 = [lull3 + [[0]13 — 2l|ullz]v]|2 cos 6. (10)
We can expand the left hand side into
-
lo = wll3 = [v]3 = 2u"v + [|ull3. (11)

By comparing the two equations, we have the desired result.

Example 7. Show that
[(w, 0)| < [Jullf|o]- (12)

This is known as the Cauchy—Schwarz inequality.

e The strategy of the proof is to complete the square.

2010112 — ((w. o2 = lluli2 (o 2_(<u,v>)((u,v))
Pl = () = ] (H || s ) (13)
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e The proof might seem ingenious, but there is actually a geometric interpretation that we will
see later.

Example 8. Show that

u v

~ lullzflollz ~

when both v and v are not 0.




e By Cauchy-Schwarz, (u'v)? < |Jul|3]|v||% implies

T 2
<u”) <1. (17)
[[ull2]|v]l2

Definition 5. A line is a set of points {x : = u + tv for t € R} for any vector u and vector

v #0.

e Think of a line as shooting a ray along the direction of v from the point w.

Example 9. In two dimensions, a line consists of points (z,y) that satisfies

()= () () )

If we write

r—Uu v v
Y = Ug + tvg = ug + 11}2: 233""(“2_2)7 (19)
U1 V1 U1
a b

we have y = ax + b, the familiar way of writing a line in 2D.

Definition 6. A plane is a set of points {z : v' (z — u) = 0} for any vector u and vector

v #0.

The vector v is the normal vector perpendicular to the plane, and u is a shift from the origin.

Example 10. In three dimensions, a plane consists of points (z,y, z) that satisfies

T
U1 x (5]
) y| — | uw =0. (20)
V3 z us




If we write

-

U1 x (5%

2 y| —(uwe| ] = v v+ v2 y+ v3 z+ (—vius — vauz — v3uz) =0, (21)
~— ~— ~—

VU3 z u3 a b c d

we get ax+by+cz+d = 0, the familiar way of writing a plane in 3D. Note that (a, b, ¢) = (v1, va, v3)
is the normal vector.

Example 11. Show that points that satisfies y = w'x + b, where w € R? and b € R, forms
a plane.

We can rewrite y = w' x + b as

(5) (G)-())= o

The points (z,y) € R¥! form a plane, with a normal vector (w, —1) € R%! and a shift (0,b) €
Rd—i—l'

Example 12. Show that v is on the plane {z : v" (z — u) = 0}.

The point u is on the plane because v (u — u) = 0.

Example 13. Show that points {z : v (z —u) > 0} and {z : v (z — u) < 0} belong to two
sides of the plane {z : v (x — u) = 0}.

e To get to either side of the plane, we first start from a point ¢ on the plane and move along
the line parallel the normal vector v.

1 =x9+ v

The fact that x( is on the plane means that v' (29 — u) = 0. The new point zg 4 tv would
satisfy
v (o + tv) —u) = v (0 — u) + t]jv]5 = t]v]f3. (23)

The above expression is positive if ¢ > 0. All points with £ > 0 are on one side of the plane
and, by the above, satisfy {z : v (z —u) > 0}. Similarly, all points with ¢t < 0 are on the
other side of the plane, satisfying {z : v (z — u) < 0}.



e Points are one side of a plane constitute a halfspace.

Definition 7. The vector ||ul|2 cosG| is a projection of u on v, where u and v has an

angle 6.

[vll2

llu||2 COSQ

Projection is the act of casting a shadow. It’s not hard to see that |||u||2 cos@)| is the length of
u projected on v. To give it a direction, we multiply ||u||2 cos@ by v/||v|2. Note that v/|v||2 offers
a direction and has an /5 norm of 1.

Example 14. The projection of u on v is

u'v v (24)
[vll2 [[vll2”
-
v u'v v
[[ul[2 cos & = Jlull2 = T (25)
lv H IIUH ||sz [ollz lollz — o]l o]
Example 15. The vector
-
w— 20 (26)
[oll2 [Jo]l2
is perpendicular to the projection of v on v.

e Intuitively, we have the figure below.

v
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u — ||ul| cos 6




We can verify this algebraically.
-

(i) C-feem) -G -(GR) > @

[oll2 [[]l2

e The perpendicular part is the term that appears in the proof of Cauchy—Schwarz. In other
words, the proof Cauchy—Schwarz requires that the perpendicular part has a non-zero norm,

and this is true as any norm of a vector is non-zero.

Example 16. The distance between a point z and a plane {z : v (x —u) = 0} is

[0]]2

e The strategy is to project z — u on the normal vector v. Note the shift w.

e The projection of z —u on v is

vl (z—u) v . (29)
vz [lvll2
The norm of this vector is
Ty _
[v]l2

Example 17. The distance between a point z and a line {z : x = u + tv for any ¢t € R} is

v (z—u) v
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(z —u) -

e The strategy is to project z — u on the line, i.e., the vector v, and to get the perpendicular

part.



e The perpendicular part after the projection is

(Z_u)_UT(z—u) v
ol [lvll2
The distance is the length of that vector, i.e.,
(2 —u) — vi(z—u) v
[oll2 [lvll2

2

(33)



