Analytic Geometry

Lecturer: Hao Tang

Definition 1. A vector is an element in \mathbb{R}^{d} that consists of d coordinates. For a vector x, we write its d coordinates as $\left(x_{1}, x_{2}, \ldots, x_{d}\right)$.

Definition 2. The multiplication of a vector x by a scalar $a \in \mathbb{R}$ and the addition of two vectors u and v are defined as

- $a x=\left(a x_{1}, a x_{2}, \ldots, a x_{d}\right)$
- $u+v=\left(u_{1}+v_{1}, \ldots, u_{d}+v_{d}\right)$
- The notation $u-v$ is a more convenient way of writing $u+(-1) v$.

Definition 3. The dot product between two vectors u and v is defined as

$$
\begin{equation*}
u^{\top} v=u_{1} v_{1}+\cdots+u_{d} v_{d}=\sum_{i=1}^{d} u_{i} v_{i} \tag{1}
\end{equation*}
$$

Example 1. The dot product satisfies the following properties.

- bilinearity
$-(a u)^{\top} v=a\left(u^{\top} v\right)=u^{\top}(a v)$ for any two vectors u and v and a scalar $a \in \mathbb{R}$.
$-(u+v)^{\top} w=u^{\top} w+v^{\top} w$ for any three vectors u, v, and w.
$-w^{\top}(u+v)=w^{\top} u+w^{\top} v$ for any three vectors u, v, and w.
- commutativity
- $u^{\top} v=v^{\top} u$ for any two vectors u and v.
- These properties defines a inner product. We can show that dot product satifies all the above properties and, hence, is an inner product.
- The inner product of u and v is written as $\langle u, v\rangle$. The notation $u^{\top} v$ is only for the dot product.
- The proofs of these properties are left as exercises.

Definition 4. The ℓ_{2} norm of a vector v is defined as

$$
\begin{equation*}
\|v\|_{2}=\sqrt{v^{\top} v}=\sqrt{v_{1}^{2}+\cdots+v_{d}^{2}} . \tag{2}
\end{equation*}
$$

- There are other norms. For example, the ℓ_{1} norm $\|v\|_{1}=\sum_{i=1}^{d}\left|v_{i}\right|$.

Example 2. In a two-dimensional space, a vector $x=\left(x_{1}, x_{2}\right)$ has an ℓ_{2} norm $\|x\|_{2}=$ $\sqrt{x_{1}^{2}+x_{2}^{2}}$. Intuitively, the ℓ_{2} norm is the length of a vector, and this is true even in d dimensional spaces.

Example 3. The ℓ_{2} norm satisfies the following properties

- nonnegativity
- $\|u\| \geq 0$ for any vector u.
- $\|a u\|=|a|\|u\|$ for any scalar $a \in \mathbb{R}$ and a vector u
- $\|u\|=0$ only if the vector u is 0 .
- triangle inequality

$$
-\|u\|+\|v\| \geq\|u+v\| \text { for any two vectors } u \text { and } v
$$

- These properties defines a norm, so the subscript 2 is intentionally left out. We can show that the ℓ_{2} norm satisfies the above properties and, hence, is a norm.
- In fact, if we have an inner product, we can show that $\sqrt{\langle x, x\rangle}$ is a norm. We can conveniently write $\|x\|=\sqrt{\langle x, x\rangle}$.
- The proofs of these properties are left as exercises.

Example 4. Show that

$$
\begin{equation*}
\|u+v\|_{2}^{2}=\|u\|_{2}^{2}+2 u^{\top} v+\|v\|_{2}^{2} . \tag{3}
\end{equation*}
$$

$$
\begin{align*}
\|u+v\|_{2}^{2} & =(u+v)^{\top}(u+v) & & \text { definition of } \ell_{2} \text { norm } \tag{4}\\
& =(u+v)^{\top} u+(u+v)^{\top} v & & \text { bilinearity } \tag{5}\\
& =u^{\top} u+v^{\top} u+u^{\top} v+v^{\top} v & & \text { bilinearity } \tag{6}\\
& =\|u\|_{2}^{2}+2 u^{\top} v+\|v\|_{2}^{2} & & \text { commutativity and definition of } \ell_{2} \text { norm } \tag{7}
\end{align*}
$$

Example 5. Show that $v /\|v\|_{2}$ has an ℓ_{2} norm of 1 for any vector $v \neq 0$.

$$
\begin{equation*}
\left\|\frac{v}{\|v\|_{2}}\right\|_{2}=\frac{1}{\|v\|_{2}}\|v\|_{2}=1 \tag{8}
\end{equation*}
$$

Example 6. If two vectors u and v have an angle θ between them, show that

$$
\begin{equation*}
\cos \theta=\frac{u^{\top} v}{\|u\|_{2}\|v\|_{2}} \tag{9}
\end{equation*}
$$

Based on the law of cosine (the figure above), we have

$$
\begin{equation*}
\|v-u\|_{2}^{2}=\|u\|_{2}^{2}+\|v\|_{2}^{2}-2\|u\|_{2}\|v\|_{2} \cos \theta . \tag{10}
\end{equation*}
$$

We can expand the left hand side into

$$
\begin{equation*}
\|v-u\|_{2}^{2}=\|v\|_{2}^{2}-2 u^{\top} v+\|u\|_{2}^{2} . \tag{11}
\end{equation*}
$$

By comparing the two equations, we have the desired result.
Example 7. Show that

$$
\begin{equation*}
|\langle u, v\rangle| \leq\|u\|\|v\| . \tag{12}
\end{equation*}
$$

This is known as the Cauchy-Schwarz inequality.

- The strategy of the proof is to complete the square.

$$
\begin{align*}
\|u\|^{2}\|v\|^{2}-(\langle u, v\rangle)^{2} & =\|u\|^{2}\left(\|v\|^{2}-\frac{(\langle u, v\rangle)(\langle u, v\rangle)}{\|u\|^{2}}\right) \tag{13}\\
& =\|u\|^{2}\left[\|v\|^{2}-2\left\langle\frac{\langle u, v\rangle}{\|u\|^{2}} u, v\right\rangle+\left\langle\frac{\langle u, v\rangle}{\|u\|^{2}} u, \frac{\langle u, v\rangle}{\|u\|^{2}} u\right\rangle\right] \tag{14}\\
& =\|u\|^{2}\left\|v-\frac{\langle u, v\rangle}{\|u\|^{2}} u\right\|^{2} \geq 0 \tag{15}
\end{align*}
$$

- The proof might seem ingenious, but there is actually a geometric interpretation that we will see later.

Example 8. Show that

$$
\begin{equation*}
-1 \leq \frac{u^{\top} v}{\|u\|_{2}\|v\|_{2}} \leq 1 \tag{16}
\end{equation*}
$$

when both u and v are not 0 .

- By Cauchy-Schwarz, $\left(u^{\top} v\right)^{2} \leq\|u\|_{2}^{2}\|v\|_{2}^{2}$ implies

$$
\begin{equation*}
\left(\frac{u^{\top} v}{\|u\|_{2}\|v\|_{2}}\right)^{2} \leq 1 \tag{17}
\end{equation*}
$$

Definition 5. A line is a set of points $\{x: x=u+t v$ for $t \in \mathbb{R}\}$ for any vector u and vector $v \neq 0$.

- Think of a line as shooting a ray along the direction of v from the point u.

Example 9. In two dimensions, a line consists of points (x, y) that satisfies

$$
\begin{equation*}
\binom{x}{y}=\binom{u_{1}}{u_{2}}+t\binom{v_{1}}{v_{2}} . \tag{18}
\end{equation*}
$$

If we write

$$
\begin{equation*}
y=u_{2}+t v_{2}=u_{2}+\frac{x-u_{1}}{v_{1}} v_{2}=\underbrace{\frac{v_{2}}{v_{1}}}_{a} x+\underbrace{\left(u_{2}-\frac{v_{2}}{v_{1}}\right)}_{b}, \tag{19}
\end{equation*}
$$

we have $y=a x+b$, the familiar way of writing a line in 2D.
Definition 6. A plane is a set of points $\left\{x: v^{\top}(x-u)=0\right\}$ for any vector u and vector $v \neq 0$.

The vector v is the normal vector perpendicular to the plane, and u is a shift from the origin.

Example 10. In three dimensions, a plane consists of points (x, y, z) that satisfies

$$
\left(\begin{array}{l}
v_{1} \tag{20}\\
v_{2} \\
v_{3}
\end{array}\right)^{\top}\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)-\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)\right)=0
$$

If we write

$$
\left(\begin{array}{l}
v_{1} \tag{21}\\
v_{2} \\
v_{3}
\end{array}\right)^{\top}\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)-\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)\right)=\underbrace{v_{1}}_{a} x+\underbrace{v_{2}}_{b} y+\underbrace{v_{3}}_{c} z+\underbrace{\left(-v_{1} u_{1}-v_{2} u_{2}-v_{3} u_{3}\right)}_{d}=0
$$

we get $a x+b y+c z+d=0$, the familiar way of writing a plane in 3D. Note that $(a, b, c)=\left(v_{1}, v_{2}, v_{3}\right)$ is the normal vector.

Example 11. Show that points that satisfies $y=w^{\top} x+b$, where $w \in \mathbb{R}^{d}$ and $b \in \mathbb{R}$, forms a plane.

We can rewrite $y=w^{\top} x+b$ as

$$
\begin{equation*}
\binom{w}{-1}^{\top}\left(\binom{x}{y}-\binom{0}{b}\right)=0 \tag{22}
\end{equation*}
$$

The points $(x, y) \in \mathbb{R}^{d+1}$ form a plane, with a normal vector $(w,-1) \in \mathbb{R}^{d+1}$ and a shift $(0, b) \in$ \mathbb{R}^{d+1}.

Example 12. Show that u is on the plane $\left\{x: v^{\top}(x-u)=0\right\}$.
The point u is on the plane because $v^{\top}(u-u)=0$.
Example 13. Show that points $\left\{x: v^{\top}(x-u)>0\right\}$ and $\left\{x: v^{\top}(x-u)<0\right\}$ belong to two sides of the plane $\left\{x: v^{\top}(x-u)=0\right\}$.

- To get to either side of the plane, we first start from a point x_{0} on the plane and move along the line parallel the normal vector v.

The fact that x_{0} is on the plane means that $v^{\top}\left(x_{0}-u\right)=0$. The new point $x_{0}+t v$ would satisfy

$$
\begin{equation*}
v^{\top}\left(\left(x_{0}+t v\right)-u\right)=v^{\top}\left(x_{0}-u\right)+t\|v\|_{2}^{2}=t\|v\|_{2}^{2} \tag{23}
\end{equation*}
$$

The above expression is positive if $t>0$. All points with $t>0$ are on one side of the plane and, by the above, satisfy $\left\{x: v^{\top}(x-u)>0\right\}$. Similarly, all points with $t<0$ are on the other side of the plane, satisfying $\left\{x: v^{\top}(x-u)<0\right\}$.

- Points are one side of a plane constitute a halfspace.

Definition 7. The vector $\|u\|_{2} \cos \theta \frac{v}{\|v\|_{2}}$ is a projection of u on v, where u and v has an angle θ.

Projection is the act of casting a shadow. It's not hard to see that $\left|\|u\|_{2} \cos \theta\right|$ is the length of u projected on v. To give it a direction, we multiply $\|u\|_{2} \cos \theta$ by $v /\|v\|_{2}$. Note that $v /\|v\|_{2}$ offers a direction and has an ℓ_{2} norm of 1 .

Example 14. The projection of u on v is

$$
\begin{equation*}
\frac{u^{\top} v}{\|v\|_{2}} \frac{v}{\|v\|_{2}} \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
\|u\|_{2} \cos \theta \frac{v}{\|v\|_{2}}=\|u\|_{2} \frac{u^{\top} v}{\|u\|_{2}\|v\|_{2}} \frac{v}{\|v\|_{2}} \frac{v}{\|v\|_{2}}=\frac{u^{\top} v}{\|v\|} \frac{v}{\|v\|} \tag{25}
\end{equation*}
$$

Example 15. The vector

$$
\begin{equation*}
u-\frac{u^{\top} v}{\|v\|_{2}} \frac{v}{\|v\|_{2}} \tag{26}
\end{equation*}
$$

is perpendicular to the projection of u on v.

- Intuitively, we have the figure below.

We can verify this algebraically.

$$
\begin{equation*}
\left(\frac{u^{\top} v}{\|v\|_{2}} \frac{v}{\|v\|_{2}}\right)^{\top}\left(u-\frac{u^{\top} v}{\|v\|_{2}} \frac{v}{\|v\|_{2}}\right)=\left(\frac{u^{\top} v}{\|v\|_{2}}\right)^{2}-\left(\frac{u^{\top} v}{\|v\|_{2}}\right)^{2}=0 \tag{27}
\end{equation*}
$$

- The perpendicular part is the term that appears in the proof of Cauchy-Schwarz. In other words, the proof Cauchy-Schwarz requires that the perpendicular part has a non-zero norm, and this is true as any norm of a vector is non-zero.

Example 16. The distance between a point z and a plane $\left\{x: v^{\top}(x-u)=0\right\}$ is

$$
\begin{equation*}
\frac{\left|v^{\top}(z-u)\right|}{\|v\|_{2}} . \tag{28}
\end{equation*}
$$

- The strategy is to project $z-u$ on the normal vector v. Note the shift u.

- The projection of $z-u$ on v is

$$
\begin{equation*}
\frac{v^{\top}(z-u)}{\|v\|_{2}} \frac{v}{\|v\|_{2}} \tag{29}
\end{equation*}
$$

The norm of this vector is

$$
\begin{equation*}
\frac{\left|v^{\top}(z-u)\right|}{\|v\|_{2}} \tag{30}
\end{equation*}
$$

Example 17. The distance between a point z and a line $\{x: x=u+t v$ for any $t \in \mathbb{R}\}$ is

$$
\begin{equation*}
\left\|(z-u)-\frac{v^{\top}(z-u)}{\|v\|_{2}} \frac{v}{\|v\|_{2}}\right\|_{2} . \tag{31}
\end{equation*}
$$

- The strategy is to project $z-u$ on the line, i.e., the vector v, and to get the perpendicular part.

- The perpendicular part after the projection is

$$
\begin{equation*}
(z-u)-\frac{v^{\top}(z-u)}{\|v\|_{2}} \frac{v}{\|v\|_{2}} . \tag{32}
\end{equation*}
$$

The distance is the length of that vector, i.e.,

$$
\begin{equation*}
\left\|(z-u)-\frac{v^{\top}(z-u)}{\|v\|_{2}} \frac{v}{\|v\|_{2}}\right\|_{2} . \tag{33}
\end{equation*}
$$

