Definition 1. The minimum of a function $f : \mathbb{R}^d \to \mathbb{R}$ is written as $\min_x f(x)$, and has the property that $\min_x f(x) \leq f(y)$ for any y.

Definition 2. The value x^* such that $f(x^*) = \min_x f(x)$ is called a minimizer.

Example 1. For the parabola $f(x) = x^2 + 4x - 1 = (x + 2)^2 - 5$, the minimum is -5 and the minimizer is $x = -2$.

Definition 3. A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if for any $0 \leq \alpha \leq 1$, we have

$$f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y)$$

for any x and y.

Definition 4. A function f is concave if $-f$ is convex.

Example 2. If f is convex, then

$$f(x) \geq f(y) + \nabla f(y)^\top (x - y)$$

for any x and y.

We can arrange the following

$$f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y)$$

into

$$f(y) + \frac{f(y + \alpha(x - y)) - f(y)}{\alpha} \leq f(x).$$

Remember that this holds for any $0 \leq \alpha \leq 1$. In particular, if we take the limit,

$$f(y) + \lim_{\alpha \to 0} \frac{f(y + \alpha(x - y)) - f(y)}{\alpha} = f(y) + \nabla f(y)^\top (x - y) \leq f(x).$$
Definition 5. A matrix A is positive semidefinite if $v^\top Av \geq 0$ for all v, and is written as $A \succeq 0$.

Example 3. A function is convex if its Hessian is positive semidefinite.

The proof relies on mean-value theorem. It’s not difficult, but is beyond the scope of this course.

Example 4. Show that the mean-squared error $\ell(y, \hat{y}) = (y - \hat{y})^2$ is convex in \hat{y}.

\[
\frac{\partial^2}{\partial \hat{y}^2} \ell = 2 \geq 0. \tag{6}
\]

Example 5. Show that the function

\[f(x) = x^\top \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} x \tag{7} \]

is convex.

The Hessian of f is $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$. For any $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, we have

\[\begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 2v_1^2 + 3v_2^2 \geq 0 \tag{8} \]

The Hessian of f is positive semidefinite.

Example 6. Show that the Hessian of $f(x) = \|x\|_2^2$ is $2I$, and hence $\|x\|_2^2$ is convex in x.

\[\frac{\partial^2}{\partial x_i \partial x_j} f = 0 \quad \frac{\partial^2}{\partial x_i^2} f = 2 \tag{9} \]

Example 7. Show that if f is convex, then $g(x) = f(Ax + b)$ is also convex.

\[g(\alpha x + (1 - \alpha)y) = f(\alpha(Ax + b) + (1 - \alpha)(Ay + b)) \]
\[\leq \alpha f(Ax + b) + (1 - \alpha)f(Ay + b) = \alpha g(x) + (1 - \alpha)g(y) \tag{10} \]

Example 8. Show that if f_1, \ldots, f_k are convex, then $f = \beta_1 f_1 + \cdots + \beta_k f_k$ is also convex when $\beta_1, \ldots, \beta_k \geq 0$.

2
\[f(\alpha x + (1 - \alpha)y) = \beta_1 f_1(\alpha x + (1 - \alpha)y) + \cdots + \beta_k f_k(\alpha x + (1 - \alpha)y) \]
\[\leq \beta_1 \alpha_1 f_1(x) + \beta_1(1 - \alpha)f_1(y) + \cdots + \beta_k \alpha f_k(x) + \beta_k(1 - \alpha)f_k(y) \]
\[= \alpha(\beta_1 f_1(x) + \cdots + \beta_k f_k(x)) + (1 - \alpha)(\beta_1 f_1(y) + \cdots + \beta_k f_k(y)) \]
\[= \alpha f(x) + (1 - \alpha)f(y) \]
\[\leq \beta_1 \alpha f_1(x) + \beta_1(1 - \alpha)f_1(y) + \cdots + \beta_k \alpha f_k(x) + \beta_k(1 - \alpha)f_k(y) \]
\[= f(\alpha x + (1 - \alpha)y) \]

Exercise 1. Given a data set of \(n \) samples \(\{(x_1, y_1), \ldots, (x_n, y_n)\} \), show that

\[L = \sum_{i=1}^{n} (w^\top x_i - y_i)^2 = \|Xw - y\|_2^2 \]

if we have

\[X = \begin{bmatrix} -x_1 & \cdots & -x_n \end{bmatrix} \quad y = \begin{bmatrix} y_1 \\
\vdots \\
y_n \end{bmatrix}. \]

Exercise 2. Given a data set of \(n \) samples \(\{(x_1, y_1), \ldots, (x_n, y_n)\} \), show that the mean-squared error

\[L = \|Xw - y\|_2^2 \]

is convex.

Example 9. Show that if \(f \) is convex and \(\nabla f(x^*) = 0 \) for a point \(x^* \), then \(x^* \) is the minimizer of \(f \).

Because \(f \) is convex, we have for any \(x \) and \(y \),

\[f(x) \geq f(y) + \nabla f(y)^\top (x - y). \]

In particular, if we let \(y = x^* \),

\[f(x) \geq f(x^*) + \nabla f(x^*)^\top (x - x^*) = f(x^*). \]

Example 10. Show that \(\nabla_x (x^\top Ax) = (A^\top + A)x \).

We see that \(x^\top Ax \) is a real value. If we take the derivative of \(x^\top Ax \), we get

\[\frac{\partial}{\partial x_k} \sum_{i=1}^{d} \sum_{j=1}^{d} a_{ij}x_i x_j = \sum_{i\neq j} a_{ik} x_i + \sum_{j \neq i} a_{kj} x_j + \sum_{i=1}^{d} 2a_{ii} x_i \]
\[= \sum_{i=1}^{d} a_{ik} x_i + \sum_{j=1}^{d} a_{kj} x_j = a_{ik}^\top x + a_k x \]
where \(a_{k} \) is the \(k \)-th column of \(A \) and \(a_{k} \) is the \(k \)-th row of \(A \).

Example 11. Show that \(w^* = (X^\top X)^{-1}X^\top y \) is the minimizer for \(L = \|Xw - y\|_2^2 \).

\[
L = (Xw - y)^\top (Xw - y) = w^\top X^\top Xw - 2y^\top Xw + y^\top y \tag{23}
\]
\[
\nabla L = (X^\top X + X^\top X)w - 2X^\top y = 0 \tag{24}
\]

If \(w^* = (X^\top X)^{-1}X^\top y \), then \(\nabla L(w^*) = 0 \). Because \(L \) is convex in \(w \), \(w^* \) is a minimizer of \(L \).

Example 12. Show that \(\ell(s) = \log(1 + \exp(-s)) \) is convex in \(s \).

\[
\frac{\partial \ell}{\partial s} = \frac{-\exp(-s)}{1 + \exp(-s)} = \frac{1}{1 + \exp(-s)} - 1 \tag{25}
\]
\[
\frac{\partial^2 \ell}{\partial s^2} = \frac{-1}{1 + \exp(-s)} \frac{-\exp(-s)}{1 + \exp(-s)} = \frac{1}{1 + \exp(-s)} \left(1 - \frac{1}{1 + \exp(-s)} \right) \geq 0 \tag{26}
\]

Exercise 3. Given a data set of \(n \) samples \(\{(x_1, y_1), \ldots, (x_n, y_n)\} \), show that the log loss

\[
L = \sum_{i=1}^{n} \log \left(1 + \exp(-y_i w^\top x_i) \right) \tag{27}
\]

is convex.

Definition 6. A function \(f : \mathbb{R}^d \to \mathbb{R} \) is called strictly convex if for \(0 \leq \alpha \leq 1 \), we have

\[
f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y) \tag{28}
\]

for any \(x \neq y \).

Exercise 4. A function \(f : \mathbb{R}^d \to \mathbb{R} \) is strictly convex if

\[
f(x) > f(y) + \nabla f(y)^\top (x - y) \tag{29}
\]

for any \(x \neq y \).

Definition 7. A matrix \(A \) is positive definite if \(v^\top Av > 0 \) for any \(v \neq 0 \).
Exercise 5. A function $f : \mathbb{R}^d \to \mathbb{R}$ is strictly convex if its Hessian is positive definite.

Example 13. Show that if f is strictly convex, then f has a unique minimizer.

Suppose x^* is a minimizer of f, i.e., $\nabla f(x^*) = 0$. The inequality

$$f(x) > f(y) + \nabla f(y)^\top (x - y).$$ \hspace{1cm} (30)

holds for any $x \neq y$. In particular, if we let $y = x^*$,

$$f(x) > f(x^*) + \nabla f(x^*)^\top (x - x^*) = f(x^*).$$ \hspace{1cm} (31)