Optimization 1

Lecturer: Hao Tang

Definition 1. The minimum of a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is written as $\min _{x} f(x)$, and has the property that $\min _{x} f(x) \leq f(y)$ for any y.

Definition 2. The value x^{*} such that $f\left(x^{*}\right)=\min _{x} f(x)$ is called a minimizer.

Example 1. For the parabola $f(x)=x^{2}+4 x-1=(x+2)^{2}-5$, the minimum is -5 and the mimimizer is $x=-2$.

Definition 3. A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if for any $0 \leq \alpha \leq 1$, we have

$$
\begin{equation*}
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y) \tag{1}
\end{equation*}
$$

for any x and y.

Definition 4. A function f is concave if $-f$ is convex.

Example 2. If f is convex, then

$$
\begin{equation*}
f(x) \geq f(y)+\nabla f(y)^{\top}(x-y) \tag{2}
\end{equation*}
$$

for any x and y.

We can arrenge the following

$$
\begin{equation*}
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y) \tag{3}
\end{equation*}
$$

into

$$
\begin{equation*}
f(y)+\frac{f(y+\alpha(x-y))-f(y)}{\alpha} \leq f(x) . \tag{4}
\end{equation*}
$$

Remember that this holds for any $0 \leq \alpha \leq 1$. In particular, if we take the limit,

$$
\begin{equation*}
f(y)+\lim _{\alpha \rightarrow 0} \frac{f(y+\alpha(x-y))-f(y)}{\alpha}=f(y)+\nabla f(y)^{\top}(x-y) \leq f(x) . \tag{5}
\end{equation*}
$$

Definition 5. A matrix A is positive semidefinite if $v^{\top} A v \geq 0$ for all v, and is written as $A \succeq 0$.

Example 3. A function is convex if its Hessian is positive semidefinite.
The proof relies on mean-value theorem. It's not difficult, but is beyond the scope of this course.
Example 4. Show that the mean-squared error $\ell(y, \hat{y})=(y-\hat{y})^{2}$ is convex in \hat{y}.

$$
\begin{equation*}
\frac{\partial^{2}}{\partial \hat{y}^{2}} \ell=2 \geq 0 \tag{6}
\end{equation*}
$$

Example 5. Show that the function

$$
f(x)=x^{\top}\left[\begin{array}{ll}
2 & 0 \tag{7}\\
0 & 3
\end{array}\right] x
$$

is convex.
The Hessian of f is $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$. For any $v=\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right]^{\top}$, we have

$$
\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \tag{8}\\
0 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{ll}
2 v_{1} & 3 v_{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=2 v_{1}^{2}+3 v_{2}^{2} \geq 0
$$

The Hessian of f is positive semidefinite.
Example 6. Show that the Hessian of $f(x)=\|x\|_{2}^{2}$ is $2 I$, and hence $\|x\|_{2}^{2}$ is convex in x.

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f=0 \quad \frac{\partial^{2}}{\partial x_{i}^{2}} f=2 \tag{9}
\end{equation*}
$$

Example 7. Show that if f is convex, then $g(x)=f(A x+b)$ is also convex.

$$
\begin{align*}
g(\alpha x+(1-\alpha) y) & =f(\alpha(A x+b)+(1-\alpha)(A y+b)) \tag{10}\\
& \leq \alpha f(A x+b)+(1-\alpha) f(A y+b)=\alpha g(x)+(1-\alpha) g(y) \tag{11}
\end{align*}
$$

Example 8. Show that if f_{1}, \ldots, f_{k} are convex, then $f=\beta_{1} f_{1}+\cdots+\beta_{k} f_{k}$ is also convex when $\beta_{1}, \ldots, \beta_{k} \geq 0$.

$$
\begin{align*}
f(\alpha x+(1-\alpha) y) & =\beta_{1} f_{1}(\alpha x+(1-\alpha) y)+\cdots+\beta_{k} f_{k}(\alpha x+(1-\alpha) y) \tag{12}\\
& \leq \beta_{1} \alpha_{1} f_{1}(x)+\beta_{1}(1-\alpha) f_{1}(y)+\cdots+\beta_{k} \alpha f_{k}(x)+\beta_{k}(1-\alpha) f_{k}(y) \tag{13}\\
& =\alpha\left(\beta_{1} f_{1}(x)+\cdots+\beta_{k} f_{k}(x)\right)+(1-\alpha)\left(\beta_{1} f_{1}(y)+\cdots+\beta_{k} f_{k}(y)\right) \tag{14}\\
& =\alpha f(x)+(1-\alpha) f(y) \tag{15}
\end{align*}
$$

Exercise 1. Given a data set of n samples $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, show that

$$
\begin{equation*}
L=\sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}=\|X w-y\|_{2}^{2} \tag{16}
\end{equation*}
$$

if we have

$$
X=\left[\begin{array}{c}
-x_{1}- \tag{17}\\
\vdots \\
-x_{n}-
\end{array}\right] \quad y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right] .
$$

Exercise 2. Given a data set of n samples $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, show that the meansquared error

$$
\begin{equation*}
L=\|X w-y\|_{2}^{2} \tag{18}
\end{equation*}
$$

is convex.

Example 9. Show that if f is convex and $\nabla f\left(x^{*}\right)=0$ for a point x^{*}, then x^{*} is the minimizer of f.

Because f is convex, we have for any x and y,

$$
\begin{equation*}
f(x) \geq f(y)+\nabla f(y)^{\top}(x-y) . \tag{19}
\end{equation*}
$$

In particular, if we let $y=x^{*}$,

$$
\begin{equation*}
f(x) \geq f\left(x^{*}\right)+\nabla f\left(x^{*}\right)^{\top}\left(x-x^{*}\right)=f\left(x^{*}\right) . \tag{20}
\end{equation*}
$$

Example 10. Show that $\nabla_{x}\left(x^{\top} A x\right)=\left(A^{\top}+A\right) x$.
We see that $x^{\top} A x$ is a real value. If we take the derivative of $x^{\top} A x$, we get

$$
\begin{align*}
\frac{\partial}{\partial x_{k}} \sum_{i=1}^{d} \sum_{j=1}^{d} a_{i j} x_{i} x_{j} & =\sum_{i \neq j}^{d} a_{i k} x_{i}+\sum_{j \neq i}^{d} a_{k j} x_{j}+\sum_{i=1}^{d} 2 a_{i i} x_{i} \tag{21}\\
& =\sum_{i=1}^{d} a_{i k} x_{i}+\sum_{j=1}^{d} a_{k j} x_{j}=a_{\cdot k}^{\top} x+a_{k} \cdot x \tag{22}
\end{align*}
$$

where $a_{\cdot k}$ is the k-th column of A and a_{k}. is the k-th row of A.
Example 11. Show that $w^{*}=\left(X^{\top} X\right)^{-1} X^{\top} y$ is the minimizer for $L=\|X w-y\|_{2}^{2}$.

$$
\begin{gather*}
L=(X w-y)^{\top}(X w-y)=w^{\top} X^{\top} X w-2 y^{\top} X w+y^{\top} y \tag{23}\\
\nabla L=\left(X^{\top} X+X^{\top} X\right) w-2 X^{\top} y=0 \tag{24}
\end{gather*}
$$

If $w^{*}=\left(X^{\top} X\right)^{-1} X^{\top} y$, then $\nabla L\left(w^{*}\right)=0$. Because L is convex in w, w^{*} is a minimizer of L.
Example 12. Show that $\ell(s)=\log (1+\exp (-s))$ is convex in s.

$$
\begin{gather*}
\frac{\partial \ell}{\partial s}=\frac{-\exp (-s)}{1+\exp (-s)}=\frac{1}{1+\exp (-s)}-1 \tag{25}\\
\frac{\partial^{2} \ell}{\partial s^{2}}=\frac{-1}{1+\exp (-s)} \frac{-\exp (-s)}{1+\exp (-s)}=\frac{1}{1+\exp (-s)}\left(1-\frac{1}{1+\exp (-s)}\right) \geq 0 \tag{26}
\end{gather*}
$$

Exercise 3. Given a data set of n samples $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, show that the log loss

$$
\begin{equation*}
L=\sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} w^{\top} x_{i}\right)\right) \tag{27}
\end{equation*}
$$

is convex.

Definition 6. A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called stricly convex if for $0 \leq \alpha \leq y$, we have

$$
\begin{equation*}
f(\alpha x+(1-\alpha) y)<\alpha f(x)+(1-\alpha) f(y) \tag{28}
\end{equation*}
$$

for any $x \neq y$.

Exercise 4. A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is stricly convex if

$$
\begin{equation*}
f(x)>f(y)+\nabla f(y)^{\top}(x-y) \tag{29}
\end{equation*}
$$

for any $x \neq y$.

Definition 7. A matrix A is positive definite if $v^{\top} A v>0$ for any $v \neq 0$.

Exercise 5. A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is stricly convex if its Hessian is positive definite.

Example 13. Show that if f is strictly convex, then f has a unique minimizer.
Suppose x^{*} is a minimizer of f, i.e., $\nabla f\left(x^{*}\right)=0$. The inequality

$$
\begin{equation*}
f(x)>f(y)+\nabla f(y)^{\top}(x-y) . \tag{30}
\end{equation*}
$$

holds for any $x \neq y$. In particular, if we let $y=x^{*}$,

$$
\begin{equation*}
f(x)>f\left(x^{*}\right)+\nabla f\left(x^{*}\right)^{\top}\left(x-x^{*}\right)=f\left(x^{*}\right) . \tag{31}
\end{equation*}
$$

