Machine Learning: Multivariate Calculus

Hao Tang

January 24, 2024

Derivative in 1D

The derivative of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ at x_{0} is defined as

$$
\begin{equation*}
\left(D_{x} f\right)\left(x_{0}\right)=\left(\frac{d}{d x} f\right)\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} . \tag{1}
\end{equation*}
$$

Derivative as linear approximation

Derivative as linear approximation

Derivative as linear approximation

Derivative as linear approximation

- Consider the line $g_{x_{0}}(x)=f\left(x_{0}\right)+\left(D_{x} f\right)\left(x_{0}\right)\left(x-x_{0}\right)$.
- The term $E(x)=\left|f(x)-g_{x_{0}}(x)\right|$ defines the vertical distance between the line and the function.
- Think of approximating the function with the line, and $E(x)$ tells us how bad this approximation is.
- The error has to become small as we get close to x_{0}, i.e.,

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{E(x)}{x-x_{0}}=0 \tag{2}
\end{equation*}
$$

Derivative as linear approximation

$$
\begin{align*}
E(x) & =\frac{\left|f(x)-g_{x_{0}}(x)\right|}{x-x_{0}}\left(x-x_{0}\right)=\frac{\left|f(x)-f\left(x_{0}\right)-\left(D_{x} f\right)\left(x_{0}\right)\left(x-x_{0}\right)\right|}{x-x_{0}}\left(x-x_{0}\right) \tag{3}\\
& =\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-\left(D_{x} f\right)\left(x_{0}\right)\right|\left(x-x_{0}\right) \tag{4}
\end{align*}
$$

Alternative definition of derivative

Suppose we have a function T that is linear. Show that if

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{f(x+h)-[f(x)+T(x) h]}{h}=0 \tag{5}
\end{equation*}
$$

for all x, we have

$$
\begin{equation*}
T(x)=\left(D_{x} f\right)(x) \tag{6}
\end{equation*}
$$

for all x.

Directional derivative

- The directional derivative of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ along the direction v at $x_{0} \in \mathbb{R}^{d}$ is defined as

$$
\begin{equation*}
\left(D_{v} f\right)\left(x_{0}\right)=\lim _{t \rightarrow 0} \frac{f\left(x_{0}+t v\right)-f\left(x_{0}\right)}{t} \tag{7}
\end{equation*}
$$

Directional derivative

- The directional derivative of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ along the direction v at $x_{0} \in \mathbb{R}^{d}$ is defined as

$$
\begin{equation*}
\left(D_{v} f\right)\left(x_{0}\right)=\lim _{t \rightarrow 0} \frac{f\left(x_{0}+t v\right)-f\left(x_{0}\right)}{t} \tag{7}
\end{equation*}
$$

- If we let $g_{x_{0}}(t)=f\left(x_{0}+t v\right)$, then

$$
\begin{equation*}
\left(D_{t} g\right)(0)=\lim _{t \rightarrow 0} \frac{g(0+t)-g(0)}{t}=\lim _{t \rightarrow 0} \frac{f\left(x_{0}+t v\right)-f\left(x_{0}\right)}{t}=\left(D_{v} f\right)\left(x_{0}\right) \tag{8}
\end{equation*}
$$

Example

- Consider the function $f(x, y)=x^{2}-y^{2}$.
- If we are at $(2,0)$, the directional derivative along $(1,0)$ is 4 .

Example

- Consider the function $f(x, y)=x^{2}-y^{2}$.
- If we are at $(2,0)$, the directional derivative along $(1,0)$ is 4 .
- If we take a line at $\{(x, y):(x, y)=(2,0)+t(1,0)=(2+t, 0)$ for $t \in \mathbb{R}\}$, we have $g(t)=f(2+t, 0)=(2+t)^{2}$. The derivative $\left(D_{t} g\right)(t)=2(2+t)$, and $\left(D_{t} g\right)(0)=2 \cdot(2+0)=4$.

Partial derivatives

- A partial derivative is a directional derivative along the direction of coordinate axes.

Partial derivatives

- A partial derivative is a directional derivative along the direction of coordinate axes.
- In a three-dimensional space, the direction of the axes are

$$
\begin{equation*}
(1,0,0) \quad(0,1,0) \quad(0,0,1) . \tag{9}
\end{equation*}
$$

For a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the partial derivatives along the axes are

$$
\begin{equation*}
\frac{\partial}{\partial x} f \quad \frac{\partial}{\partial y} f \quad \frac{\partial}{\partial z} f \tag{10}
\end{equation*}
$$

Example

- Given a function $f(x, y)=x^{2}-y^{2}$, show that

$$
\begin{equation*}
\left(\frac{\partial}{\partial x} f\right)(x, y)=2 x \quad\left(\frac{\partial}{\partial y} f\right)(x, y)=-2 y \tag{11}
\end{equation*}
$$

Example

- Given a function $f(x, y)=x^{2}-y^{2}$, show that

$$
\begin{equation*}
\left(\frac{\partial}{\partial x} f\right)(x, y)=2 x \quad\left(\frac{\partial}{\partial y} f\right)(x, y)=-2 y \tag{11}
\end{equation*}
$$

- The x-axis is the direction $(1,0)$. At any point (x, y), the line along that direction is $(x+t, y)$. The function value along that line is $g(t)=f(x+t, y)=(x+t)^{2}-y^{2}$. We then have $\left(D_{t} g\right)(t)=2(x+t)$, and

$$
\begin{equation*}
\left(\frac{\partial}{\partial x} f\right)(x, y)=\left(D_{t} g\right)(0)=2 x \tag{12}
\end{equation*}
$$

Example

- Given a function $f(x, y)=x^{2}-y^{2}$, show that

$$
\begin{equation*}
\left(\frac{\partial}{\partial x} f\right)(x, y)=2 x \quad\left(\frac{\partial}{\partial y} f\right)(x, y)=-2 y \tag{11}
\end{equation*}
$$

- The x-axis is the direction $(1,0)$. At any point (x, y), the line along that direction is $(x+t, y)$. The function value along that line is $g(t)=f(x+t, y)=(x+t)^{2}-y^{2}$. We then have $\left(D_{t} g\right)(t)=2(x+t)$, and

$$
\begin{equation*}
\left(\frac{\partial}{\partial x} f\right)(x, y)=\left(D_{t} g\right)(0)=2 x \tag{12}
\end{equation*}
$$

- Treat other variables as constants and take 1D derivatives.

Example

- Given a function $f(x, y, z)=(x+2 y-3 z)^{2}$, show that

$$
\begin{align*}
& \left(\frac{\partial}{\partial x} f\right)(x, y, z)=2(x+2 y-3 z) \tag{13}\\
& \left(\frac{\partial}{\partial y} f\right)(x, y, z)=2(x+2 y-3 z) \cdot 2 \tag{14}\\
& \left(\frac{\partial}{\partial z} f\right)(x, y, z)=2(x+2 y-3 z) \cdot(-3) \tag{15}
\end{align*}
$$

Example

- Given a function

$$
\begin{equation*}
f(w, b)=\frac{1}{1+\exp \left(-\left(w^{\top} x+b\right)\right)} \tag{16}
\end{equation*}
$$

show that

$$
\begin{equation*}
\left(\frac{\partial}{\partial b} f\right)(w, b)=f(w, b)(1-f(w, b)) \tag{17}
\end{equation*}
$$

Gradients

- The gradient of a function is the vector consisting of all partial derivatives.

Gradients

- The gradient of a function is the vector consisting of all partial derivatives.
- For a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, its gradient is

$$
(\nabla f)(x, y, z)=\left[\begin{array}{c}
\left(\frac{\partial}{\partial x} f\right)(x, y, z) \tag{18}\\
\left(\frac{\partial}{\partial y} f\right)(x, y, z) \\
\left(\frac{\partial}{\partial z} f\right)(x, y, z)
\end{array}\right]
$$

Example

- Given a function $f(x, y, z)=(x+2 y-3 z)^{2}$, show that its gradient is

$$
(\nabla f)(x, y, z)=\left[\begin{array}{c}
2(x+2 y-3 z) \tag{19}\\
2(x+2 y-3 z) \cdot 2 \\
2(x+2 y-3 z) \cdot(-3)
\end{array}\right]
$$

Example

- Given a function $f(a)=b^{\top} a$, show that its gradient is

$$
\begin{equation*}
(\nabla f)(a)=b \tag{20}
\end{equation*}
$$

Example

- Given a function $f(a)=b^{\top} a$, show that its gradient is

$$
\begin{equation*}
(\nabla f)(a)=b \tag{20}
\end{equation*}
$$

- Given a function $f(a)=b^{\top} A a$, show that its gradient is

$$
\begin{equation*}
(\nabla f)(a)=A^{\top} b \tag{21}
\end{equation*}
$$

Example

- Given a function $f(a)=\|a\|_{2}^{2}$, show that its gradient is

$$
\begin{equation*}
(\nabla f)(a)=2 a \tag{22}
\end{equation*}
$$

Example

- Given a function $f(w)=\left(w^{\top} x+b-y\right)^{2}$, show that

$$
\begin{equation*}
(\nabla f)(w)=2\left(w^{\top} x+b-y\right) x \tag{23}
\end{equation*}
$$

Example

- Given a function

$$
\begin{equation*}
f(w)=\frac{1}{1+\exp \left(-\left(w^{\top} x+b\right)\right)} \tag{24}
\end{equation*}
$$

show that its gradient is

$$
\begin{equation*}
(\nabla f)(w)=f(w)(1-f(w)) x \tag{25}
\end{equation*}
$$

Theorem

- For a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and any direction v at any point x, show that

$$
\begin{equation*}
\left(D_{v} f\right)(x)=(\nabla f)(x)^{\top} v \tag{26}
\end{equation*}
$$

- Once we know the gradient, we know all directional derivatives.

Second-order derivative

For a function $f: \mathbb{R} \rightarrow \mathbb{R}$, its second-order derivative is defined and written as

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} f=\frac{\partial}{\partial x}\left(\frac{\partial}{\partial x} f\right) \tag{27}
\end{equation*}
$$

Example

- Given a function $f(x)=x^{2}$, it's second-order derivative is 2 .

Example

- Given a function $f(x)=x^{2}$, it's second-order derivative is 2 .
- The second-order derivative tells us whether the function looks like a cup or an upside-down cup.

Hessian

- The Hessian of a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is defined as

$$
\left[\begin{array}{cccc}
\frac{\partial^{2}}{\partial x_{1} \partial x_{1}} f & \frac{\partial^{2}}{\partial x^{\prime} \partial x_{2}} f & \ldots & \frac{\partial^{2}}{\partial x_{1} \partial x_{d}} f \tag{28}\\
\frac{\partial^{2}}{\partial x_{2} \partial x_{1}} f & \frac{\partial^{2}}{\partial x_{2} \partial x_{2}} f & \ldots & \frac{\partial^{2}}{\partial x_{2} \partial x_{d}} f \\
\vdots f & & & \vdots \\
\frac{\partial^{2}}{\partial x_{d} \partial x_{1}} f & \frac{\partial^{2}}{\partial x_{d} \partial x_{2}} f & \ldots & \frac{\partial^{2}}{\partial x_{d} \partial x_{d}} f
\end{array}\right]
$$

- Because
the Hessian matrix is always symmetric.

Example

- Given a function $f(x, y)=x^{2}-y^{2}$, show that its Hessian is $\left[\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right]$.

