Machine Learning Directed Acyclic Graph (DAG)

Kia Nazarpour

Based on original slides by Hang Tao

Context

Directed Acyclic Graph (DAGs) are used to encode researchers' a priori assumptions about the relationships between and among variables in causal structures.

1. More expressive than mathematical representation?
2. Enable clear communication
3. Inform us about how to avoid bias due to confounding

Learning Outcomes

1. Acknowledge the key motivations behind the use of DAGs
2. Remember the notion of statistical independence in the context of DAGs
3. Able to write the chain rule for conditional probabilitie
4. Able to draw and interpret a simple DAG

References:

1. Bishop, Pattern Recognition and Machine Learning, Springer, 2008. (Section 9.1)

Causal Machine Learning

Causal Reasoning

Causal Discovery

Structured data

Causal Graph

Goal: To determine the causal structure

Causal Representation Learning

Unstructured data

Goal: To find relevant variable
to solve causal tasks

DAG: Key concepts

A DAG is a model of causality.

DAG: Key concepts

A DAG is a model of causality.

Example: What is the (total) effect of smoking on stroke risk?
unknown or unmeasured variable

Am J Epidemiol, 177(4):292-298

DAG: Key concepts

A DAG is a model of causality.

Example: What is the (total) effect of smoking on stroke risk?

Age and U are confounders - control for their effects
unknown or unmeasured variable

Am J Epidemiol, 177(4):292-298

DAG: Key concepts

A DAG is a model of causality.

Example: What is the (total) effect of smoking on stroke risk?

Age and U are confounders - control for their effects

HIV is a mediator - do not control
unknown or unmeasured variable

Am J Epidemiol, 177(4):292-298

DAG: Key concepts

A DAG is a model of causality.
unknown or unmeasured

Example: What is the (total) effect of smoking on stroke risk?

Age and U are confounders - control for their effects

HIV is a mediator - do not control
variable

Am J Epidemiol, 177(4):292-298

Treatment Effect: What will be the outcome if a patient is given a particular treatment? (causal reasoning)

Statistical Independence of two variables

- Two variables x and y are independent if

$$
p(x, y)=p(x) p(y)
$$

- Equivalently, two variables x and y are independent if

$$
p(x \mid y)=p(x)
$$

- We will use $x \perp y$ to denote the independence of x and y.

Statistical Independence of many variables

- If $\left\{x_{1}, \ldots, x_{n}\right\} \perp\left\{y_{1}, \ldots, y_{m}\right\}$ then

$$
p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)=p\left(x_{1}, \ldots, x_{n}\right) p\left(y_{1}, \ldots, y_{m}\right)
$$

- Independence implies factorisation.
- For example, suppose $x \in \mathcal{X}, y \in \mathcal{Y}, z \in \mathcal{Z}$. If $\{x, y\} \perp z$,

$$
p(x, y, z)=p(x, y) p(z)
$$

Statistical Independence of many variables

- If $\left\{x_{1}, \ldots, x_{n}\right\} \perp\left\{y_{1}, \ldots, y_{m}\right\}$ then

$$
p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)=p\left(x_{1}, \ldots, x_{n}\right) p\left(y_{1}, \ldots, y_{m}\right)
$$

- Independence implies factorisation.
- For example, suppose $x \in \mathcal{X}, y \in \mathcal{Y}, z \in \mathcal{Z}$. If $\{x, y\} \perp z$,

$$
p(x, y, z)=p(x, y) p(z)
$$

- The original domain is $\mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$, but after factorisation, the domain we need to consider, $\mathcal{X} \times \mathcal{Y}$ and \mathcal{Z}, is much smaller than $\mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$.

Mutual independence vs pairwise independence

- The variables x_{1}, x_{2}, x_{3} are mutually independent if

$$
p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right)
$$

- If $x_{1} \perp x_{2}, x_{2} \perp x_{3}$, and $x_{1} \perp x_{3}$, then x_{1}, x_{2}, x_{3} are pairwise independent.
- Mutual independence implies pairwise independence, but the converse is not necessarily true.

Conditional independence

- The variables x and y are conditionally independent given z if

$$
p(x, y \mid z)=p(x \mid z) p(y \mid z)
$$

- In this case, we write $(x \perp y) \mid z$.
- The sets of variables $\left\{x_{1}, \ldots, x_{n}\right\}$ and $\left\{y_{1}, \ldots, y_{m}\right\}$ are conditionally independent given $\left\{z_{1}, \ldots, z_{t}\right\}$ if

$$
\begin{align*}
& p\left(\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \mid z_{1}, \ldots, z_{t}\right) \\
& \quad=p\left(x_{1}, \ldots, x_{n} \mid z_{1}, \ldots, z_{t}\right) p\left(y_{1}, \ldots, y_{m} \mid z_{1}, \ldots, z_{t}\right) \tag{1}
\end{align*}
$$

Testing independence

- By definition of marginalisation,

$$
\begin{aligned}
& p(x \mid z)=\sum_{y} p(x, y \mid z) \\
& p(y \mid z)=\sum_{x} p(x, y \mid z)
\end{aligned}
$$

- Check if

$$
p(x, y \mid z)=p(x \mid z) p(y \mid z)
$$

for all x, y, and z.

- The above algorithm is slow. In general, testing independence is a hard problem.

"Chain rule" of conditional probabilities

- Any joint probability $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ can be factorised in any order.
- Not relying on independence and true for any distribution
- For example,

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \cdots p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right)
$$

- Or

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=p\left(x_{n}\right) p\left(x_{n-1} \mid x_{n}\right) p\left(x_{n-2} \mid x_{n-1}, x_{n}\right) \cdots p\left(x_{1} \mid x_{2}, \ldots, x_{n}\right)
$$

Proof - "Chain rule" of conditional probabilities

$$
\begin{aligned}
p\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \cdots p\left(x_{n-1} \mid x_{1}, \ldots, x_{n-2}\right) p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) \\
& =p\left(x_{1}\right) \frac{p\left(x_{2}, x_{1}\right)}{p\left(x_{1}\right)} p\left(x_{3} \mid x_{1}, x_{2}\right) \cdots p\left(x_{n-1} \mid x_{1}, \ldots, x_{n-2}\right) p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right)
\end{aligned}
$$

Proof - "Chain rule" of conditional probabilities

$$
\begin{aligned}
p\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \cdots p\left(x_{n-1} \mid x_{1}, \ldots, x_{n-2}\right) p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) \\
& =p\left(x_{1}\right) \frac{p\left(x_{2}, x_{1}\right)}{p\left(x_{1}\right)} p\left(x_{3} \mid x_{1}, x_{2}\right) \cdots p\left(x_{n-1} \mid x_{1}, \ldots, x_{n-2}\right) p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) \\
& =p\left(x_{1}\right) \frac{p\left(x_{2}, x_{1}\right)}{p\left(x_{1}\right)} \frac{p\left(x_{3}, x_{2}, x_{1}\right)}{p\left(x_{2}, x_{1}\right)} \cdots \frac{p\left(x_{n-1}, x_{1}, \ldots, x_{n-2}\right)}{p\left(x_{n-2}, x_{n-3}, \ldots, x_{1}\right)} \frac{p\left(x_{n}, x_{1}, \ldots, x_{n-1}\right)}{p\left(x_{n-1}, x_{n-2}, \ldots, x_{1}\right)}
\end{aligned}
$$

Applying independence

- Every Thursday there is an alarm testing (t).
- The alarm (a) goes off when there is fire (f).
- If the alarm goes off, people in the building should meet at the front door (g) on the ground floor.
- People gathers in front the building when there is a strike (s).

Applying independence

- Alarm testing is independent of a fire $(t \perp f)$.
- A strike is independent of what happens in the building $(s \perp\{a, f, t\})$.
- People gathering is independent of fire and alarm testing if we know whether the alarm goes off or whether there is a strike $(g \perp\{f, t\} \mid s, a)$.
- Combining the above, we have

$$
\begin{aligned}
p(a, t, f, s, g) & =p(t) p(f \mid t) p(a \mid f, t) p(s \mid a, f, t) p(g \mid s, a, f, t) \\
& =p(t) p(f) p(a \mid f, t) p(s) p(g \mid s, a)
\end{aligned}
$$

A (directed) graph representation

$$
p(a, t, f, s, g)=p(t) p(f) p(a \mid f, t) p(s) p(g \mid s, a)
$$

A (directed) graph representation

- Each vertex is a variable.
- A parent has edges pointing from itself to its children.
- The graph is directed and acyclic.
- A distribution factorises according to a graph if

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p\left(x_{i} \mid \operatorname{Pa}\left(x_{i}\right)\right) .
$$

- Instead of describing independencies, the graph describes a factorisation.

Two objects

- Graph
- Probability distribution
- A probability distribution has a set of independencies.
- A probability distribution can factorise according to a graph.
- Can we read off independencies from a graph?

Basic structures

chain

common cause

$x \perp z \mid y$
v-structure

$$
\begin{gathered}
x \perp z \\
x \not \perp z \mid y
\end{gathered}
$$

Basic structures - Chain

chain

$$
p(x, z \mid y)=\frac{p(x, y, z)}{p(y)}=\frac{p(x) p(y \mid x) p(z \mid y)}{p(y)}=p(x \mid y) p(z \mid y)
$$

Basic structures - Common Cause

common cause

$$
p(x, z \mid y)=\frac{p(x, y, z)}{p(y)}=\frac{p(y) p(x \mid y) p(z \mid y)}{p(y)}=p(x \mid y) p(z \mid y)
$$

Basic structures - v-structure

v-structure

$$
p(x, z)=\sum_{y} p(x, y, z)=\sum_{y} p(x) p(z) p(y \mid x, y)=p(x) p(z)
$$

Basic structures - v-structure

v-structure

If $x \perp z \mid y$,

$$
\begin{aligned}
p(x, z) & =\sum_{y} p(x, y, z)=\sum_{y} p(y) p(x, z \mid y)=\sum_{y} p(y) p(x \mid y) p(z \mid y) \\
& =\sum_{y} p(x \mid y) p(y, z)
\end{aligned}
$$

But

$$
p(x, z)=p(x) p(z)=\sum_{y} p(x) p(y, z) .
$$

This can hold only when $p(x \mid y)=p(x)$, but x and y are not independent; a contradiction.

