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No free lunch theorem

® |f H is the set of all functions, H is not PAC learnable.

o If H ={f} where Lp(f) =0, then H is PAC learnable with ERM.
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Error decomposition

Lp(h) = Lp(h) — min Lp(h') +  min Lp(H) (1)
(S —
estimation error approximation error

® Approximation error is due to the choice of H.

® Estimation error is due to not finding the best program in .
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Tradeoff between model complexity and generalization

When we say we only compare to the best in H, we are comparing against
minheH LD(h)

When H is large, minpey Lp(h) becomes lower.

When H is the universe of all functions, we cannot learn.

‘H needs to be about the right size.

‘H can actually be a large, but the range of A needs to be about the right size.

For example, we can only run a finite number of steps with stochastic gradient
descent, so the range we can explore is limited by the algorithm.
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Uniform convergence

A hypothesis class H has uniform convergence property if for any distribution D, and
any € >0 and 0 < ¢ < 1, there exists N > 0 such that for every h € H,

Pspn ”Ls(h) — LD(h)’ > 6] < (2)

for all n > N.
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Uniform convergence

® Uniform convergence assures that the training error and generalization error are
not far from each other.

® This has to happen for all h € H, the uniform part (and a strong requirement).
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Comparing PAC learning and uniform convergence

LA

minher LD(h) +e€
miny ey Lp(h)
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Comparing PAC learning and uniform convergence
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Uniform convergence

® |f we have uniform convergence,
LD(hERM) < Ls(hERm)—l-e < L5(h)+€ < Lp(h)+€+€ (3)

for any h € H.

® |n particular,

LD(hERM) < min LD(h/) + 2e. (4)
heH

® |f H{ has uniform convergence property, then H is PAC-learnable with ERM.
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Fundamental theorem of statistical learning

Uniform PAC
convergence learnable

Y
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Fundamental theorem of statistical learning

finite Uniform PAC
VC dimension convergence learnable

Y
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Vapnik—Chervonenkis dimension

® \VVC dimension is the largest number of points that # can shatter.
® Given n data points, there are 2" ways of label them {+1, —1}.

® A set of n points is shattered by H if there is an arrangement of n points such
that classifiers in H can produce all 2" ways of labeling.
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Shattering points in 2D

We could shatter 3 points with a line in 2D.

However, we cannot shatter 4 points with a line in 2D.

The VC dimension of lines in 2D is 3.

In general, linear classifiers with p parameters have VC dimension p + 1.
We can again shatter 4 points with a 2-layer MLP in 2D.

Neural networks have larger VC dimension than linear classifiers.

The sine function has infinite VC dimension.
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VC generalization bounds

With probability 1 — ¢, for all he H

8d log(en/d) + 2log(4/6)

n

Lp(h) < Ls(h) + 2\/
d is called the VC dimension.
For linear classifiers Hji, = {x — w'x : w € RP}, VC-dim(H,in) = p + 1.
For multilayer perceptrons with p edges, VC-dim(H) = O(plog p).
These results are independent of learning algorithms.

In particular, it is independent of how ERM is done.
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Generalization bounds

Many generalization bounds have the following form.

With probability 1 — ¢, for all h e H

<), fleel1/)

Lo(h) < 15 + ) S0 1 £

2n

n is the number of samples.
C(H) is a capacity measure of H.

There is a family of uniform convergence results.
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Sample complexity

® How many samples do we need to achieve a certain error?

® How large should n to get to €7

\/C(:l) N \/Iog;ﬂ?) < (7)

o (C(?—[) + |og(1/5))

® |n other words,

€2
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Interpreting generalization bounds

® \/C generalization bounds

8d log(en/d) + 2log(4/6)

Lo(h) < Ls(h) + 2,/

® When H is large, minpcy Ls(h) can be low.

® When H is large, d becomes large.
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Capacity-generalization tradeoff
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Capacity-generalization tradeoff
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Capacity-generalization tradeoff
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Capacity-generalization tradeoff
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