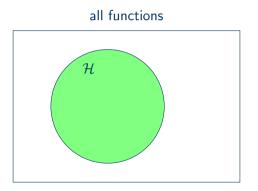
Machine Learning: Generalization 2

Hao Tang

March 18, 2024

all functions

all functions



- If \mathcal{H} is the set of all functions, \mathcal{H} is not PAC learnable.
- If $\mathcal{H} = \{f\}$ where $L_{\mathcal{D}}(f) = 0$, then \mathcal{H} is PAC learnable with ERM.

Error decomposition

$$L_{\mathcal{D}}(h) = \underbrace{L_{\mathcal{D}}(h) - \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h')}_{\text{estimation error}} + \underbrace{\min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h')}_{\text{approximation error}}$$

- Approximation error is due to the choice of \mathcal{H} .
- Estimation error is due to not finding the best program in \mathcal{H} .

(1)

Tradeoff between model complexity and generalization

- When we say we only compare to the best in *H*, we are comparing against min_{h∈H} L_D(h).
- When \mathcal{H} is large, $\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$ becomes lower.
- When \mathcal{H} is the universe of all functions, we cannot learn.
- ${\mathcal H}$ needs to be about the right size.
- \mathcal{H} can actually be a large, but the range of A needs to be about the right size.
- For example, we can only run a finite number of steps with stochastic gradient descent, so the range we can explore is limited by the algorithm.

Uniform convergence

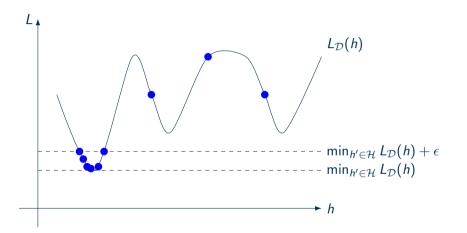
A hypothesis class \mathcal{H} has uniform convergence property if for any distribution \mathcal{D} , and any $\epsilon > 0$ and $0 \le \delta \le 1$, there exists N > 0 such that for every $h \in \mathcal{H}$,

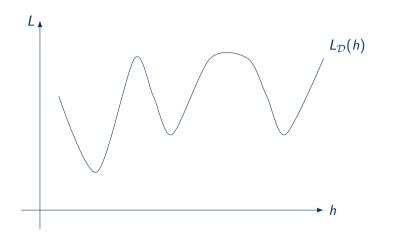
$$\mathbb{P}_{S \sim \mathcal{D}^n} \left[|L_S(h) - L_\mathcal{D}(h)| > \epsilon \right] < \delta \tag{2}$$

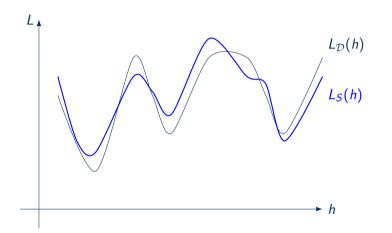
for all $n \ge N$.

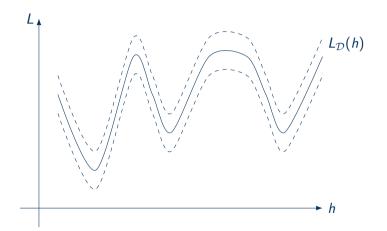
Uniform convergence

- Uniform convergence assures that the training error and generalization error are not far from each other.
- This has to happen for all $h \in \mathcal{H}$, the uniform part (and a strong requirement).









Uniform convergence

• If we have uniform convergence,

 $L_{\mathcal{D}}(h_{\mathsf{ERM}}) \leq L_{\mathcal{S}}(h_{\mathsf{ERM}}) + \epsilon \leq L_{\mathcal{S}}(h) + \epsilon \leq L_{\mathcal{D}}(h) + \epsilon + \epsilon \tag{3}$ for any $h \in \mathcal{H}$.

• In particular,

$$L_{\mathcal{D}}(h_{\mathsf{ERM}}) \le \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + 2\epsilon.$$
(4)

• If $\mathcal H$ has uniform convergence property, then $\mathcal H$ is PAC-learnable with ERM.

Fundamental theorem of statistical learning

Fundamental theorem of statistical learning

Vapnik–Chervonenkis dimension

- VC dimension is the largest number of points that ${\mathcal H}$ can shatter.
- Given *n* data points, there are 2^n ways of label them $\{+1, -1\}$.
- A set of *n* points is **shattered** by \mathcal{H} if there is an arrangement of *n* points such that classifiers in \mathcal{H} can produce all 2^n ways of labeling.

Shattering points in 2D

- We could shatter 3 points with a line in 2D.
- However, we cannot shatter 4 points with a line in 2D.
- The VC dimension of lines in 2D is 3.
- In general, linear classifiers with p parameters have VC dimension p + 1.
- We can again shatter 4 points with a 2-layer MLP in 2D.
- Neural networks have larger VC dimension than linear classifiers.
- The sine function has infinite VC dimension.

VC generalization bounds

• With probability $1 - \delta$, for all $h \in \mathcal{H}$

$$L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + 2\sqrt{rac{8d\log(en/d) + 2\log(4/\delta)}{n}}$$

- *d* is called the VC dimension.
- For linear classifiers $\mathcal{H}_{\text{lin}} = \{x \mapsto w^{\top}x : w \in \mathbb{R}^{p}\}$, $\text{VC-dim}(\mathcal{H}_{\text{lin}}) = p + 1$.
- For multilayer perceptrons with p edges, VC-dim $(\mathcal{H}) = O(p \log p)$.
- These results are independent of learning algorithms.
- In particular, it is independent of how ERM is done.

(5)

Generalization bounds

- Many generalization bounds have the following form.
- With probability 1δ , for all $h \in \mathcal{H}$

$$L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + \sqrt{\frac{C(\mathcal{H})}{n}} + \sqrt{\frac{\log(1/\delta)}{2n}}.$$

- *n* is the number of samples.
- $C(\mathcal{H})$ is a capacity measure of \mathcal{H} .
- There is a family of uniform convergence results.

(6)

Sample complexity

- How many samples do we need to achieve a certain error?
- How large should *n* to get to ϵ ?

$$\sqrt{rac{C(\mathcal{H})}{n}} + \sqrt{rac{\log(1/\delta)}{2n}} \leq \epsilon$$

• In other words,

$$n = O\left(\frac{C(\mathcal{H}) + \log(1/\delta)}{\epsilon^2}\right)$$
(8)

(7)

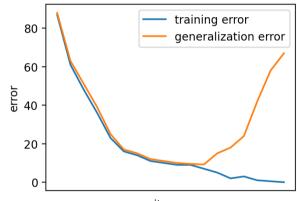
Interpreting generalization bounds

• VC generalization bounds

$$L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + 2\sqrt{rac{8d\log(en/d) + 2\log(4/\delta)}{n}}$$

- When \mathcal{H} is large, $\min_{h \in \mathcal{H}} L_{\mathcal{S}}(h)$ can be low.
- When \mathcal{H} is large, *d* becomes large.

(9)



capacity measure

