Machine Learning: Analytic Geometry

Hao Tang

January 19, 2024

Vectors in \mathbb{R}^d

•
$$x = (x_1, x_2, \dots, x_d)$$

•
$$ax = (ax_1, ax_2, \dots, ax_d)$$
 for $a \in \mathbb{R}$

•
$$u + v = (u_1 + v_1, \dots, u_d + v_d)$$

•
$$u - v = u + (-1)v$$

Dot product

•
$$u^{\top}v = u_1v_1 + \cdots + u_dv_d = \sum_{i=1}^d u_iv_i$$

•
$$(au)^{\top}v = a(u^{\top}v) = u^{\top}(av)$$
 for $a \in \mathbb{R}$

•
$$(u + v)^{\top} w = u^{\top} w + v^{\top} w$$

$$\bullet \ w^\top (u+v) = w^\top u + w^\top u$$

•
$$u^{\top}v = v^{\top}u$$

The ℓ_2 norm

•
$$\|v\|_2 = \sqrt{v^\top v} = \sqrt{v_1^2 + \dots + v_d^2}$$

- $||au||_2 = |a|||u||_2$ for $a \in \mathbb{R}$
- $||u||_2 \ge 0$
- If $||u||_2 = 0$, then u = 0
- $||u|| + ||v|| \ge ||u + v||$

The ℓ_2 norm and length

Dot product and angle

$$\cos \theta = \frac{u^\top v}{\|u\|_2 \|v\|_2} \tag{1}$$

Dot product and angle

By the law of cosine,

$$\|v - u\|_2^2 = \|u\|_2^2 + \|v\|_2^2 - \|u\|_2 \|v\|_2 \cos \theta.$$
 (2)

Comparing the above with

$$\|v - u\|_2^2 = \|v\|_2^2 - 2u^{\mathsf{T}}v + \|u\|_2^2, \tag{3}$$

we get

$$\cos \theta = \frac{u^{\top} v}{\|u\|_2 \|v\|_2}.\tag{4}$$

A line

A line

A line is a set of points $\{x : x = u + tv \text{ for } t \in \mathbb{R}\}$ for any vector u and vector $v \neq 0$.

A line in 2D

• Is y = ax + b a line?

A line in 2D

- Is y = ax + b a line?
- We can rewrite y = ax + b as

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ b \end{pmatrix} + t \begin{pmatrix} 1 \\ a \end{pmatrix}. \tag{5}$$

A plane

A plane

A plane (or hyperplane) is a set of points $\{x : v^{\top}(x - u) = 0\}$ for any vector u and vector $v \neq 0$.

A plane

A plane (or hyperplane) is a set of points $\{x : v^{\top}(x - u) = 0\}$ for any vector u and vector $v \neq 0$.

A plane in 3D

• Is ax + by + cz + d = 0 a plane?

A plane in 3D

- Is ax + by + cz + d = 0 a plane?
- We can rewrite ax + by + cz + d = 0 as

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix}^{\top} \begin{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ d/c \end{pmatrix} \end{pmatrix} = 0.$$
 (6)

A plane in d+1 dimension

• Is $y = w^{\top}x + b$, where $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$, a plane?

A plane in d+1 dimension

- Is $y = w^{\top}x + b$, where $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$, a plane?
- We can rewrite $y = w^{T}x + b$ as

$$\begin{pmatrix} w \\ -1 \end{pmatrix}^{\top} \begin{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} 0 \\ b \end{pmatrix} \end{pmatrix} = 0. \tag{7}$$

Halfspaces

• Points $\{x : v^{\top}(x-u) > 0\}$ are on one side of the plane $\{x : v^{\top}(x-u) = 0\}$.

Halfspaces

- Points $\{x: v^{\top}(x-u) > 0\}$ are on one side of the plane $\{x: v^{\top}(x-u) = 0\}$.
- Consider the line $\{x: x = x_0 + tv \text{ for } t \in \mathbb{R}\}$ for some x_0 on the plane.

$$v^{\top}(x_0 + tv - u) = v^{\top}(x_0 - u) + t||v||_2^2 = t||v||_2^2$$
 (8)

When t > 0, $v^{\top}(x_0 + tv - u) > 0$.

Halfspaces

Projection

The perpendicular part after projection

The distance between a plane and a point

The distance between a plane and a point

The distance between a plane and a point

The projection of z - u on v is

$$\frac{v^{\top}(z-u)}{\|v\|_2} \frac{v}{\|v\|_2},\tag{9}$$

which has an ℓ_2 norm of

$$\frac{|v^{\top}(z-u)|}{\|v\|_2}.\tag{10}$$

The distance between a line and a point

The distance between a line and a point

The distance between a line and a point

The perpendicular part after the projection of z - u on v is

$$(z-u) - \frac{v^{\top}(z-u)}{\|v\|_2} \frac{v}{\|v\|_2}, \tag{11}$$

with a norm of

$$\left\| (z - u) - \frac{v^{\top}(z - u)}{\|v\|_2} \frac{v}{\|v\|_2} \right\|_2$$
 (12)

Cauchy–Schwarz inequality

For any vector u and vector v,

$$(u^{\top}v)^2 \le \|u\|_2^2 \|v\|_2^2. \tag{13}$$

Cauchy-Schwarz inequality

$$||u||_{2}^{2}||v||_{2}^{2} - (u^{T}v)^{2} = ||u||_{2}^{2} \left(||v||_{2}^{2} - \frac{(u^{T}v)(u^{T}v)}{||u||_{2}^{2}} \right)$$

$$= ||u||_{2}^{2} \left[||v||_{2}^{2} - 2\left(\frac{u^{T}v}{||u||_{2}^{2}} u \right)^{T} v + \left(\frac{u^{T}v}{||u||_{2}^{2}} u \right)^{T} \left(\frac{u^{T}v}{||u||_{2}^{2}} u \right) \right]$$

$$= ||u||_{2}^{2} \left| ||v - \frac{u^{T}v}{||u||_{2}^{2}} u \right|^{2} \ge 0$$

$$(16)$$