Machine Learning: High-dimensional statistics

Hao Tang

March 22, 2024

High-dimensional objects in machine learning

- A 28×28 image
- A one-hot vector that represents a word in a 20000-word vocabularly set

Intuitions

- We tend to extrapolate our intuitions from two- or three-dimensional space to high-dimensional spaces.
- Many intuitions in two- and three-dimensional spaces fail to hold in high dimensions.

• The volume of a ball with radius r is

$$V(r) = rac{\pi^{d/2}}{\Gamma(d/2+1)} r^d.$$
 (1)

• The volume of a ball with radius r is

$$V(r) = \frac{\pi^{d/2}}{\Gamma(d/2+1)} r^d.$$
 (1)

• If we shrink the radius by a small amount ϵ , the volume shrinks by

$$\frac{V((1-\epsilon)r)}{V(r)} = \frac{(1-\epsilon)^d V(r)}{V(r)} = (1-\epsilon)^d \le e^{-\epsilon d}.$$
(2)

• The last inequality uses $1 - x \le e^{-x}$.

- As d becomes large, $V((1-\epsilon)r)$ is only a small fraction of V(r).
- The volume of a ball in high dimensions concentrates on the thin crust of the ball.

- As d becomes large, $V((1-\epsilon)r)$ is only a small fraction of V(r).
- The volume of a ball in high dimensions concentrates on the thin crust of the ball.
- If you uniformly sample a point, you will likely end up at the crust of the ball.

Volume of a unit ball

• The volume of a unit ball (r = 1) is

$$V(1) = \frac{\pi^{d/2}}{\Gamma(d/2+1)}.$$

• $\Gamma(x+1) \sim \sqrt{2\pi x} \left(\frac{x}{e}\right)^x$

(3)

Volume of a unit ball

• The volume of a unit ball (r = 1) is

$$V(1)=\frac{\pi^{d/2}}{\Gamma(d/2+1)}.$$

- $\Gamma(x+1) \sim \sqrt{2\pi x} \left(\frac{x}{e}\right)^x$
- $V(1) \rightarrow 0$ when $d \rightarrow \infty$.

(3)

Volume of a unit ball

Corners of the unit cube (d = 2)

Corners of the unit cube (d = 4)

- The distance between the origin and the corner is $\frac{\sqrt{d}}{2}$.
- For example, one corner is $(1/2, 1/2, \ldots, 1/2)$.
- The distance between the origin and one of the faces is $\frac{1}{2}$.
- The distances to the faces stay the same, while the distances to the corners becomes large, when *d* is large.

- Pick a north direction.
- Pick $\epsilon > 0$, the width of a slab. The volume above is about $\frac{2}{\epsilon\sqrt{d}}e^{-d\epsilon^2/2}$.

- Pick a north direction.
- Pick $\epsilon > 0$, the width of a slab. The volume above is about $\frac{2}{\epsilon\sqrt{d}}e^{-d\epsilon^2/2}$.
- The volume is concentrated at the equator.

Two random vectors inside a unit ball

- Pick a random vector *u* inside the unit ball.
- Set *u* to be the north.
- Since most of the volume is concentrated at the equator, another random vector *v* will likely lies on the equator.
- The dot product $u^{\top}v$ will likely be close to 0.

- Any two random vectors u and v in a unit ball are likely to be orthogonal, meaning u[⊤]v is likely to be small.
- The volume is concentrated at the crust, so $||u||_2$ and $||v||_2$ are likely to be close to 1.
- The distance of any two random vectors u and v is likely to be about $\sqrt{2}$.

- Distances of two random vectors in a unit ball concentrate at $\sqrt{2}$.
- Most points have similar distances!

Norm of random Gaussian vectors

• For any $x \sim \mathcal{N}(0, I)$,

$$\mathbb{P}\left(\frac{\|x\|_{2}^{2}}{d}-1>\epsilon\right) \leq \exp\left(\frac{-d\epsilon^{2}}{8}\right).$$
(4)

Norm of random Gaussian vectors

• For any $x \sim \mathcal{N}(0, I)$,

$$\mathbb{P}\left(\frac{\|x\|_{2}^{2}}{d}-1>\epsilon\right) \leq \exp\left(\frac{-d\epsilon^{2}}{8}\right).$$
(4)

• In words, for any $x \sim \mathcal{N}(0, I)$, $||x||_2$ is about \sqrt{d} .

Norm of random Gaussian vectors

• For any $x \sim \mathcal{N}(0, I)$,

$$\mathbb{P}\left(\frac{\|x\|_{2}^{2}}{d}-1>\epsilon\right) \leq \exp\left(\frac{-d\epsilon^{2}}{8}\right).$$
(4)

- In words, for any $x \sim \mathcal{N}(0, I)$, $||x||_2$ is about \sqrt{d} .
- "High-dimension Gaussian is like a soap buble."