Machine Learning: High-dimensional statistics

Hao Tang

March 22, 2024
High-dimensional objects in machine learning

- A 28×28 image
- A one-hot vector that represents a word in a 20000-word vocabulary set
Intuitions

• We tend to extrapolate our intuitions from two- or three-dimensional space to high-dimensional spaces.

• Many intuitions in two- and three-dimensional spaces fail to hold in high dimensions.
The volume of a ball with radius r is

$$V(r) = \frac{\pi^{d/2}}{\Gamma(d/2 + 1)} r^d. \quad (1)$$

Volume concentration

- The volume of a ball with radius r is

$$V(r) = \frac{\pi^{d/2}}{\Gamma(d/2 + 1)} r^d. \quad (1)$$

- If we shrink the radius by a small amount ϵ, the volume shrinks by

$$\frac{V((1 - \epsilon)r)}{V(r)} = \frac{(1 - \epsilon)^d V(r)}{V(r)} = (1 - \epsilon)^d \leq e^{-\epsilon d}. \quad (2)$$

- The last inequality uses $1 - x \leq e^{-x}$.
Volume concentration

• As d becomes large, $V((1 - \epsilon)r)$ is only a small fraction of $V(r)$.

• The volume of a ball in high dimensions concentrates on the thin crust of the ball.
Volume concentration

• As d becomes large, $V((1 - \epsilon)r)$ is only a small fraction of $V(r)$.

• The volume of a ball in high dimensions concentrates on the thin crust of the ball.

• If you uniformly sample a point, you will likely end up at the crust of the ball.
Volume concentration

\[(1 - \epsilon) r^6 / 25 \]
Volume concentration

\((1 - \epsilon) r \)
Volume concentration

\[(1 - \epsilon) r\]
Volume concentration

dimension

crust / ball
Volume of a unit ball

• The volume of a unit ball \((r = 1)\) is

\[
V(1) = \frac{\pi^{d/2}}{\Gamma(d/2 + 1)}.
\]

(3)

• \(\Gamma(x + 1) \sim \sqrt{2\pi x} \left(\frac{x}{e}\right)^x\)
Volume of a unit ball

- The volume of a unit ball \((r = 1)\) is

\[
V(1) = \frac{\pi^{d/2}}{\Gamma(d/2 + 1)}.
\]

- \(\Gamma(x + 1) \sim \sqrt{2\pi x} \left(\frac{x}{e}\right)^x\)

- \(V(1) \rightarrow 0\) when \(d \rightarrow \infty\).
Volume of a unit ball
Corners of the unit cube

\[
\left(\frac{1}{2}, \frac{1}{2} \right)
\]
Corners of the unit cube

\[
\begin{pmatrix}
\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}
\end{pmatrix}
\]
Corners of the unit cube \((d = 2)\)
Corners of the unit cube \((d = 4)\)
Corners of the unit cube

\[\frac{\sqrt{d}}{2} \]

\[\frac{1}{2} \]
Corners of the unit cube

$\frac{1}{2}$

$\frac{\sqrt{d}}{2}$
Corners of the unit cube

• The distance between the origin and the corner is $\frac{\sqrt{d}}{2}$.

• For example, one corner is $(1/2, 1/2, \ldots, 1/2)$.

• The distance between the origin and one of the faces is $\frac{1}{2}$.

• The distances to the faces stay the same, while the distances to the corners becomes large, when d is large.
Volume near the equator

- Pick a north direction.

- Pick $\epsilon > 0$, the width of a slab. The volume above is about $\frac{2}{\epsilon \sqrt{d}} e^{-d\epsilon^2/2}$.
Volume near the equator

• Pick a north direction.

• Pick $\epsilon > 0$, the width of a slab. The volume above is about $\frac{2}{\epsilon \sqrt{d}} e^{-d\epsilon^2/2}$.

• The volume is concentrated at the equator.
Volume near the equator
Volume near the equator

\[\epsilon \]
Volume near the equator
Two random vectors inside a unit ball

- Pick a random vector u inside the unit ball.

- Set u to be the north.

- Since most of the volume is concentrated at the equator, another random vector v will likely lies on the equator.

- The dot product $u^\top v$ will likely be close to 0.
Distances of two random vectors

• Any two random vectors u and v in a unit ball are likely to be orthogonal, meaning $u^\top v$ is likely to be small.

• The volume is concentrated at the crust, so $\|u\|_2$ and $\|v\|_2$ are likely to be close to 1.

• The distance of any two random vectors u and v is likely to be about $\sqrt{2}$.
Distances of two random vectors

\[d = 2 \]
Distances of two random vectors

\[d = 10 \]
Distances of two random vectors

\[d = 100 \]
Distances of two random vectors

\[d = 1000 \]
Distances of two random vectors

- Distances of two random vectors in a unit ball concentrate at $\sqrt{2}$.
- Most points have similar distances!
Norm of random Gaussian vectors

• For any \(x \sim \mathcal{N}(0, I) \),

\[
\mathbb{P} \left(\frac{\|x\|_2^2}{d} - 1 > \epsilon \right) \leq \exp \left(\frac{-d\epsilon^2}{8} \right). \tag{4}
\]
Norm of random Gaussian vectors

• For any $x \sim \mathcal{N}(0, I)$,

$$\mathbb{P}\left(\frac{\|x\|_2^2}{d} - 1 > \epsilon\right) \leq \exp\left(-\frac{d\epsilon^2}{8}\right).$$ \hspace{1cm} (4)

• In words, for any $x \sim \mathcal{N}(0, I)$, $\|x\|_2$ is about \sqrt{d}.
Norm of random Gaussian vectors

- For any $x \sim \mathcal{N}(0, I)$,

\[\mathbb{P} \left(\frac{\|x\|_2^2}{d} - 1 > \epsilon \right) \leq \exp \left(\frac{-d\epsilon^2}{8} \right). \] (4)

- In words, for any $x \sim \mathcal{N}(0, I)$, $\|x\|_2$ is about \sqrt{d}.

- “High-dimension Gaussian is like a soap bubble.”