Machine Learning: High-dimensional statistics

Hao Tang

March 22, 2024

High-dimensional objects in machine learning

- A 28×28 image
- A one-hot vector that represents a word in a 20000 -word vocabularly set

Intuitions

- We tend to extrapolate our intuitions from two- or three-dimensional space to high-dimensional spaces.
- Many intuitions in two- and three-dimensional spaces fail to hold in high dimensions.

Volume concentration

- The volume of a ball with radius r is

$$
\begin{equation*}
V(r)=\frac{\pi^{d / 2}}{\Gamma(d / 2+1)} r^{d} \tag{1}
\end{equation*}
$$

Volume concentration

- The volume of a ball with radius r is

$$
\begin{equation*}
V(r)=\frac{\pi^{d / 2}}{\Gamma(d / 2+1)} r^{d} \tag{1}
\end{equation*}
$$

- If we shrink the radius by a small amount ϵ, the volume shrinks by

$$
\begin{equation*}
\frac{V((1-\epsilon) r)}{V(r)}=\frac{(1-\epsilon)^{d} V(r)}{V(r)}=(1-\epsilon)^{d} \leq e^{-\epsilon d} . \tag{2}
\end{equation*}
$$

- The last inequality uses $1-x \leq e^{-x}$.

Volume concentration

- As d becomes large, $V((1-\epsilon) r)$ is only a small fraction of $V(r)$.
- The volume of a ball in high dimensions concentrates on the thin crust of the ball.

Volume concentration

- As d becomes large, $V((1-\epsilon) r)$ is only a small fraction of $V(r)$.
- The volume of a ball in high dimensions concentrates on the thin crust of the ball.
- If you uniformly sample a point, you will likely end up at the crust of the ball.

Volume concentration

Volume concentration

Volume concentration

Volume concentration

Volume of a unit ball

- The volume of a unit ball $(r=1)$ is

$$
\begin{equation*}
V(1)=\frac{\pi^{d / 2}}{\Gamma(d / 2+1)} \tag{3}
\end{equation*}
$$

- $\Gamma(x+1) \sim \sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x}$

Volume of a unit ball

- The volume of a unit ball $(r=1)$ is

$$
\begin{equation*}
V(1)=\frac{\pi^{d / 2}}{\Gamma(d / 2+1)} \tag{3}
\end{equation*}
$$

- $\Gamma(x+1) \sim \sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x}$
- $V(1) \rightarrow 0$ when $d \rightarrow \infty$.

Volume of a unit ball

Corners of the unit cube

Corners of the unit cube

Corners of the unit cube $(d=2)$

Corners of the unit cube $(d=4)$

Corners of the unit cube

Corners of the unit cube

Corners of the unit cube

- The distance between the origin and the corner is $\frac{\sqrt{d}}{2}$.
- For example, one corner is $(1 / 2,1 / 2, \ldots, 1 / 2)$.
- The distance between the origin and one of the faces is $\frac{1}{2}$.
- The distances to the faces stay the same, while the distances to the corners becomes large, when d is large.

Volume near the equator

- Pick a north direction.
- Pick $\epsilon>0$, the width of a slab. The volume above is about $\frac{2}{\epsilon \sqrt{d}} e^{-d \epsilon^{2} / 2}$.

Volume near the equator

- Pick a north direction.
- Pick $\epsilon>0$, the width of a slab. The volume above is about $\frac{2}{\epsilon \sqrt{d}} e^{-d \epsilon^{2} / 2}$.
- The volume is concentrated at the equator.

Volume near the equator

Volume near the equator

Volume near the equator

Two random vectors inside a unit ball

- Pick a random vector u inside the unit ball.
- Set u to be the north.
- Since most of the volume is concentrated at the equator, another random vector v will likely lies on the equator.
- The dot product $u^{\top} v$ will likely be close to 0 .

Distances of two random vectors

- Any two random vectors u and v in a unit ball are likely to be orthogonal, meaning $u^{\top} v$ is likely to be small.
- The volume is concentrated at the crust, so $\|u\|_{2}$ and $\|v\|_{2}$ are likely to be close to 1 .
- The distance of any two random vectors u and v is likely to be about $\sqrt{2}$.

Distances of two random vectors

Distances of two random vectors

- Distances of two random vectors in a unit ball concentrate at $\sqrt{2}$.
- Most points have similar distances!

Norm of random Gaussian vectors

- For any $x \sim \mathcal{N}(0, I)$,

$$
\begin{equation*}
\mathbb{P}\left(\frac{\|x\|_{2}^{2}}{d}-1>\epsilon\right) \leq \exp \left(\frac{-d \epsilon^{2}}{8}\right) . \tag{4}
\end{equation*}
$$

Norm of random Gaussian vectors

- For any $x \sim \mathcal{N}(0, I)$,

$$
\begin{equation*}
\mathbb{P}\left(\frac{\|x\|_{2}^{2}}{d}-1>\epsilon\right) \leq \exp \left(\frac{-d \epsilon^{2}}{8}\right) \tag{4}
\end{equation*}
$$

- In words, for any $x \sim \mathcal{N}(0, I),\|x\|_{2}$ is about \sqrt{d}.

Norm of random Gaussian vectors

- For any $x \sim \mathcal{N}(0, I)$,

$$
\begin{equation*}
\mathbb{P}\left(\frac{\|x\|_{2}^{2}}{d}-1>\epsilon\right) \leq \exp \left(\frac{-d \epsilon^{2}}{8}\right) \tag{4}
\end{equation*}
$$

- In words, for any $x \sim \mathcal{N}(0, I),\|x\|_{2}$ is about \sqrt{d}.
- "High-dimension Gaussian is like a soap buble."

