Machine Learning *K*-means Clustering

Kia Nazarpour

Context

- 1. Often times we need to analyse data for which we do not have their labels.
- 2. How can we find any structure in a collection of unlabelled data?
- 3. Clustering is an established category of methods for organising objects into groups whose members are similar in some way.

Learning Outcomes

- 1. Understand the key motivations behind clustering and its challenges.
- 2. Implement the K-means algorithm.
- 3. Solve the maths of the K-means algorithm.
- 4. Analyse when/how/why the simple K-means method can fail.
- 5. Understand the notion of hard and soft clustering, introducing briefly the notion of mixture models.

References:

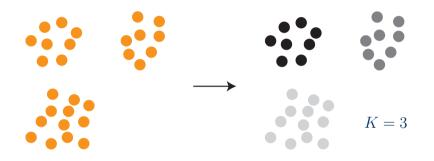
- 1. Bishop, *Pattern Recognition and Machine Learning*, Springer, 2008. (Section 9.1)
- 2. Hastie *et al.*, *The Elements of Statistical Learning*, Springer, 2017. (Section 14.3.6)

Problem Statement

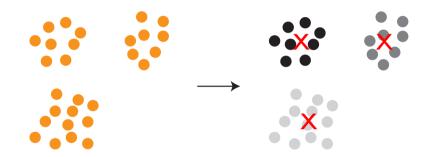
Aim: Identify clusters of data points in a multi-dimensional space.

- Suppose we have data set $\{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N\}$ as N observations of a d-dimensional variable \mathbf{x} .
- Our goal is to partition data set into a *known* number of clusters, say *K*.

Problem Statement



Problem Statement



We can formalise the idea by introducing *d*-dimensional vectors $\mu_{k \in \{1, \cdots, K\}}$ to represent each cluster.

The vectors $\boldsymbol{\mu}_{1:3}$ are shown by X.

Problem Formulation

Specific goal: Given a K, find an assignment of data points to clusters and the set of vectors $\{\mu_k\}$ to represent these cluster.

The assignment rule $(r_{nk} = 1 \text{ if } \mathbf{x}_n \text{ is in cluster } k)$ and all $\boldsymbol{\mu}_k$ s are unknown.

Ideally, we want the points in each cluster to be close to each other and far from points in other clusters.

Problem Formulation

Specific goal: Given a K, find an assignment of data points to clusters and the set of vectors $\{\mu_k\}$ to represent these cluster.

The assignment rule ($r_{nk} = 1$ if \mathbf{x}_n is in cluster k) and all $\boldsymbol{\mu}_k$ s are unknown.

Ideally, we want the points in each cluster to be close to each other and far from points in other clusters.

A proposal: Minimise the *distortion function*, i.e., the sum of the squared distances of each data point to its closest vector μ_k .

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\|^{2}$$

A proposal: Minimise the *distortion function*, i.e., the sum of the squared distances of each data point to its closest vector μ_k .

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\|^{2}$$

- 1. Given K, randomly select $oldsymbol{\mu}_{k=1,\cdots,K}$
- 2. Minimise J with respect to r_{nk} , keeping the μ_k fixed.
- 3. Minimise J with respect to μ_k , keeping the r_{nk} fixed.
- 4. Repeat steps 2 (*Expectation*) and 3 (*Maximisation*) steps until convergence, that is, $\Delta J < \epsilon$.

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\|^{2}$$

Step 2: Minimise J with respect to r_{nk} , keeping the μ_k fixed.

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\|^{2}$$

Step 2: Minimise J with respect to r_{nk} , keeping the μ_k fixed. J is a linear function of r_{nk} . Also terms with n are independent.

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\|^{2}$$

Step 2: Minimise J with respect to r_{nk} , keeping the μ_k fixed.

J is a linear function of r_{nk} . Also terms with n are independent.

Simply, $r_{nk} = 1$ for the closest cluster k, i.e. whichever k that gives the smallest value of $\|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$.

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg \min_{j} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{j}\|^{2} \\ 0 & \text{otherwise.} \end{cases}$$

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\|^{2}$$

Step 3: Minimise J with respect to μ_k , keeping the r_{nk} fixed.

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\|^{2}$$

Step 3: Minimise J with respect to μ_k , keeping the r_{nk} fixed.

J is a quadratic function of μ_k and can be minimised by setting its derivative with respect to μ_k to zero, that is $\frac{\delta J}{\delta \mu_k} = 0.$

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

Step 3: Minimise J with respect to μ_k , keeping the r_{nk} fixed.

n=1

n=1

J is a quadratic function of μ_k and can be minimised by setting its derivative with respect to μ_k to zero, that is $\frac{\delta J}{\delta \mu_k} = 0.$

$$\frac{\delta J}{\delta \boldsymbol{\mu}_k} = \frac{\delta \sum_{n=1}^N \sum_{k=1}^K r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2}{\delta \boldsymbol{\mu}_k} = \sum_{n=1}^N r_{nk} \times (-1) \times 2(\mathbf{x}_n - \boldsymbol{\mu}_k) = 0$$
$$= \sum_{n=1}^N r_{nk} \mathbf{x}_n - \sum_{n=1}^N r_{nk} \boldsymbol{\mu}_k = 0$$

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

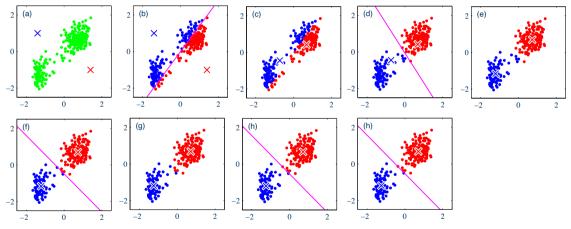
Step 3: Minimise J with respect to μ_k , keeping the r_{nk} fixed.

J is a quadratic function of μ_k and can be minimised by setting its derivative with respect to μ_k to zero, that is $\frac{\delta J}{\delta \mu_k} = 0.$

$$\frac{\delta J}{\delta \boldsymbol{\mu}_k} = \frac{\delta \sum_{n=1}^N \sum_{k=1}^K r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2}{\delta \boldsymbol{\mu}_k} = \sum_{n=1}^N r_{nk} \times (-1) \times 2(\mathbf{x}_n - \boldsymbol{\mu}_k) = 0$$
$$= \sum_{n=1}^N r_{nk} \mathbf{x}_n - \sum_{n=1}^N r_{nk} \boldsymbol{\mu}_k = 0 \quad \rightarrow \qquad \boldsymbol{\mu}_k = \frac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}$$

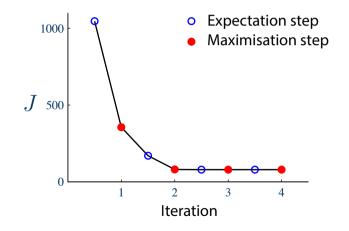
16/24

K-means: An example



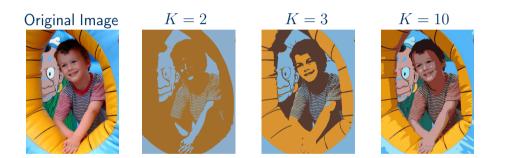
Bishop Figure 9.1

K-means: An example



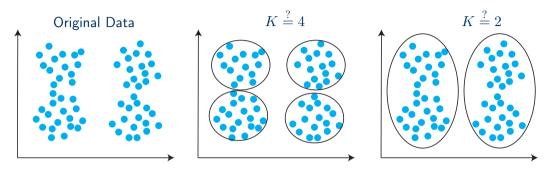
Bishop Figure 9.2

K-means for Image Segmentation and Compression



Bishop Figure 9.3

How to choose *K*?

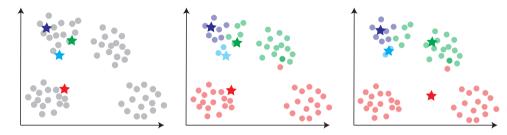


There are several methods for choosing K, including [but not limited to], using domain expertise, elbow and silhouette methods, and gap statistics^{*}.

*Tibshirani et al. J. R. Statist. Soc. B. (2001) 63:411-423.

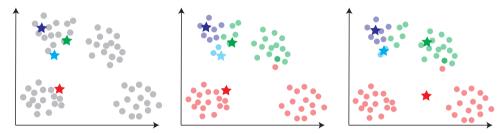
How to initialise μ_k

The K-means algorithm is sensitive to the initialisation of μ_k .



How to initialise μ_k

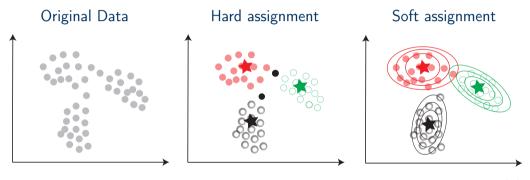
The K-means algorithm is sensitive to the initialisation of μ_k .



Methods of initialisation:

- 1. Random initialisation (the above case can happen!)
- 2. Often times, μ_k s are initialised to a subset of data (Forgy initialisation).
- 3. Repeat clustering for various initial and select the *best* set of μ_k s
- 4. K-means++ (Arthur and Vassilvitskii, 2007)

Hard assignment vs. Soft assignment



Gaussian Mixture Model

K-means: Summary

- 1. A simple unsupervised method that enables clustering of data
- 2. Poses no great computational complexity
- 3. Too crude to assume a cluster can be represented with a single point and a simple distance metric
- 4. Hard boundaries!
- 5. How to generalise it to models that can cluster data of various types and shapes!