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Data

x y

-3.0 0.0927
-2.4 -0.7417
-1.8 -0.9344
-1.2 -0.9174
-0.6 -0.4811
0.0 -0.1402
...

...
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Features

• Instead of writing y = w⊤x + b, we can add another dimension that is always 1
and have

y = w⊤x + b =

[
w
b

]⊤ [
x
1

]
= w̃⊤x̃ . (1)
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Data

x y

1 -3.0 0.0927
1 -2.4 -0.7417
1 -1.8 -0.9344
1 -1.2 -0.9174
1 -0.6 -0.4811
1 0.0 -0.1402
...

...
...
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Features

• What happens if we add a dimension of x2?

y =

w2

w1

w0

⊤ x2x
1

 = w2x
2 + w1x + w0 (2)

• If we add x2 to the data, we can now fit a parabola.
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Data

x x2 y

1 -3.0 9.0 0.0927
1 -2.4 5.76 -0.7417
1 -1.8 3.24 -0.9344
1 -1.2 1.44 -0.9174
1 -0.6 0.36 -0.4811
1 0.0 0.0 -0.1402
...

...
...

...
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Features

• In general, we can add arbitrary high-degree terms.

• If we add degree-2 terms to
[
1 x y

]
, we get

[
1 x y x2 y2 xy

]
.

• If we add degree-2 terms to
[
1 x y z

]
, we get[

1 x y z x2 y2 z2 xy xz yz
]
.

• The combination becomes many if we have more dimensions.
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Features

• Polynomial features are generic (but often useful).

• Featuers don’t need to be generic.

• Consider face detection. How do you describe what a face is?
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Face detection

• Viola-Jones end up using about 160,000 features.

• It is of course not as good as the modern neural networks, but it is robust and fast.

• The approach also later inspires how deep neural networks are designed.
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Digit recognition

• Consider digit recognition. How do you describe the digit two?

• It is a two if it is similar to one of those twos (sometimes called examplars).

• A feature can be how similar the sample is to one of those examplars.

• If the above examplars are x1, x2, . . . , x10,[
1 x⊤x1 x⊤x2 . . . x⊤x10

]
(3)
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Two approaches

• Feature

– A feature describes something about the input.

– The feature vector of x is written as ϕ(x).

– We do f (x) = w⊤ϕ(x) to make a prediction.

• Kernel

– A kernel describes similarities of the input to other samples.

– The similarity of two samples x and x ′ is written as k(x , x ′).

– We do f (x) =
∑n

i=1 αik(x , xi ) to make a prediction.
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Kernels and features

• A kernel k : Rd × Rd → R is defined as

k(x , x ′) = ϕ(x)⊤ϕ(x ′) (4)

for some feature function ϕ.

• We can immediately see that k is symmetric, i.e., k(x , x ′) = k(x ′, x).

• We allow ϕ to return an infinite-dimensional vector, and want to avoid computing
ϕ(x)⊤ϕ(x ′).
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Going from features to kernels

• The mean-squared error can be written as

L = ∥Φw − y∥22 (5)

where

Φ =


— ϕ(x1) —
— ϕ(x2) —

...
— ϕ(xn) —

 (6)

• The optimal solution is w∗ = (Φ⊤Φ)−1Φ⊤y .
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Going from features to kernels

• To make a prediction,

f (x) = w⊤ϕ(x) =
(
(Φ⊤Φ)−1Φ⊤y

)⊤
ϕ(x) (7)

= y⊤Φ(Φ⊤Φ)−1ϕ(x) (8)

• Note that A(A⊤A)−1 = (AA⊤)−1A.

f (x) = y⊤Φ(Φ⊤Φ)−1ϕ(x) = y⊤(ΦΦ⊤)−1Φϕ(x) (9)
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Going from features to kernels

f (x) = y⊤(ΦΦ⊤)−1Φϕ(x) (10)

= y⊤


ϕ(x1)

⊤ϕ(x1) ϕ(x1)
⊤ϕ(x2) . . . ϕ(x1)

⊤ϕ(xn)
ϕ(x2)

⊤ϕ(x1) ϕ(x2)
⊤ϕ(x2) . . . ϕ(x2)

⊤ϕ(xn)
...

...
...

ϕ(xn)
⊤ϕ(x1) ϕ(xn)

⊤ϕ(x2) . . . ϕ(xn)
⊤ϕ(xn)


−1 

ϕ(x1)
⊤ϕ(x)

ϕ(x2)
⊤ϕ(x)
...

ϕ(xn)
⊤ϕ(x)

 (11)

= y⊤


k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

...
...

...
k(xn, x1) k(xn, x2) . . . k(xn, xn)


−1 

k(x1, x)
k(x2, x)

...
k(xn, x)

 =
n∑

i=1

αik(xi , x)

(12)
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Some commonly used kernels

• Linear kernel: k(x , x ′) = x⊤x ′

• Polynomial kernel: k(x , x ′) = (r + x⊤x ′)d

• Gaussian (RBF) kernel: k(x , x ′) = exp
(
−∥x−x ′∥22

2σ2

)

20 / 21



Some implications

• We suddenly can compute infinite-dimensional features. Does that mean we don’t
need to craft features anymore?

• How do we use kernels for classification?

• Are neural networks kernels?

• The runtime of computing the closed-form solution with kernels is O(n3).

• The inference time for computing f (x) =
∑n

i=1 αik(xi , n) is O(n).
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