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K-means
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K-means Lloyd’s algorithm

® Assign points to their nearest centroids

vi = argmin ||x; — 3 fori=1,...,n (1)

Ly

® Update centroids based on the assignment.

2oiy Loy=kXi
= &= T E fork=1,...,K 2
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K-means
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K-means

® The objective in the K-means lecture is

n K

Zzﬂw:kHXi — pikl[3- (3)

i=1 k=1
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K-means

® The objective in the K-means lecture is

n K
2
DD Ty=kllxi — 3. (3)
i=1 k=1
® The goal is to find p1,..., Kk and y1,...,7, so as to minimize the objective.

® | loyd’s algorithm only finds a local minimal.

4/18



K-means

® |f we pack everything into vectors and matrices,

o —
Zi=[lyy lya ... Lk w=| "7 (4)
ik —
we can write
Ly=kllXi — pll3 = 1% — zW| 3. (5)
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K-means

® The final objective! is

H o 2
min X = ZWIiE (6)

K
s.t. Zz,-kzl fori=1,...,n
k=1

z €4{0,1} fori=1,...,nand k=1,....K

!The Frobenius norm of X, written as ||X||¢, is defined as the L, norm of the flattened matrix, or
[[vec(X)|[2-
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K-means (a.k.a. vector quantization)

Ix; — %13 E

one—hot(argminkzlwwK X — wl3)

% |
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loss

Autoencoders
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Autoencoders

A general autoencoder has the loss function
IX — D(E(X))|[-

The encoder E and the decoder D can be any function, including deep neural
networks.

When E(x) = xW; and D(z) = zW>, we have
X = XA, |7
When E(x) = xW and D(z) = zWT, we have

X = Xww |2,

(9)
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PCA
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PCA
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PCA
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PCA

® Maximize spread (or variance)

n
SO0 wiwl3 = w X Xw
i=1

® Minimize distance

;
Zux, (T w)wl3 = [1X — Xuw |2

® Don't forget ||w||3 = 1.

(12)

(13)

11/18



PCA

® The final objective is
min || X Xww |z (14)
st. WTw =1 (15)
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Singular value decomposition (SVD)
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Singular value decomposition (SVD)

® The singular value decomposition (SVD) of a matrix X is ULV, where
ulu=1,viv=l,

01
02

ad

and o1 > 09 > -+ > 0y.
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Eckart-Young theorem

® Let Xy =diag(o1,...,0%,0,...,0) where k < d.

® The matrix UX, VT is the optimal solution to

min [IX — X|2 (17)
X
sit. rank(X) < k (18)
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Eckart-Young theorem

® Let Xy =diag(o1,...,0%,0,...,0) where k < d.

® The matrix UX, VT is the optimal solution to

min
X

s.t.

® The matrices Z = UX, and W = VT are the optimal solution to

min
9

s.t.

IX = X7

A

rank(X) < k

IX - zw|i#

Z e R™K
W e RkXd

(17)

(18)

(19)

(20)
(21)
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Latent semantic indexing

® (Create a term-document matrix
documents
—_—

<
[
words

® Solve minz w || X — ZW/||%.

® The Z matrix provides a vector for every word, and the W matrix provides a
vector for every document.
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Matrix completion

® (Create a user-movie matrix

movies

>
I
users

® Solve minz w || X — ZW/||%.

® The reconstructed matrix ZW provides a guess of the empty entries in X.
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Summary

K-means = matrix factorization with assignment constraints
Lloyd's algorithm = autoencoding with hard assignments

PCA = linear autoencoder with encoder and decoder tied and orthogonality
constraints

SVD = low-rank matrix factorization
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Variants of autoencoders

® A regular autoencoder
IX = D(E(X))IIZ. (22)
® A denoising autoencoder
IX = D(E(n(X)II, (23)
where n is a function that injects noise.

® A variational autoencoder

IEJZNq(z\x)[_ log p(X‘Z)] + IEJZNq(z\x) [|Og ZEZ;] (24)
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