Machine Learning: Matrix factorization

Hao Tang

March 25, 2024

K-means Lloyd's algorithm

Assign points to their nearest centroids

$$\gamma_i = \underset{k=1,...,K}{\operatorname{argmin}} \|x_i - \mu_k\|_2^2 \quad \text{for } i = 1,...,n$$
 (1)

Update centroids based on the assignment.

$$\mu_k = \frac{\sum_{i=1}^n \mathbb{1}_{\gamma_i = k} x_i}{\sum_{i=1}^n \mathbb{1}_{\gamma_i = k}} \quad \text{for } k = 1, \dots, K$$
 (2)

• The objective in the K-means lecture is

$$\sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{1}_{\gamma_i = k} \|x_i - \mu_k\|_2^2.$$
 (3)

• The objective in the K-means lecture is

$$\sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{1}_{\gamma_i = k} \|x_i - \mu_k\|_2^2.$$
 (3)

- The goal is to find μ_1, \ldots, μ_K and $\gamma_1, \ldots, \gamma_n$ so as to minimize the objective.
- Lloyd's algorithm only finds a local minimal.

If we pack everything into vectors and matrices,

$$z_{i} = \begin{bmatrix} \mathbb{1}_{\gamma_{i}=1} & \mathbb{1}_{\gamma_{i}=2} & \dots & \mathbb{1}_{\gamma_{i}=K} \end{bmatrix} \qquad W = \begin{bmatrix} -\mu_{1} & -\mu_{2} & -\mu_{2} & -\mu_{2} & -\mu_{2} & -\mu_{2} & -\mu_{2} & -\mu_{K} &$$

we can write

$$\mathbb{1}_{\gamma_i = k} \|x_i - \mu_k\|_2^2 = \|x_i - z_i W\|_2^2.$$
 (5)

• The final objective¹ is

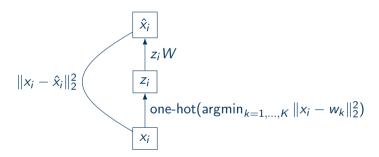
$$\min_{Z,W} ||X - ZW||_F^2 \tag{6}$$

s.t.
$$\sum_{k=1}^{K} z_{ik} = 1$$
 for $i = 1, ..., n$ (7)

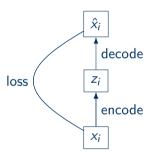
$$z_{ik} \in \{0,1\}$$
 for $i = 1, ..., n$ and $k = 1, ..., K$ (8)

¹The Frobenius norm of X, written as $||X||_F$, is defined as the L_2 norm of the flattened matrix, or $||\text{vec}(X)||_2$.

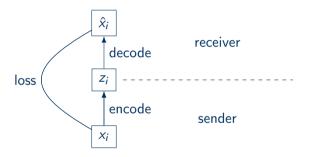
K-means (a.k.a. vector quantization)



Autoencoders



Autoencoders



Autoencoders

• A general autoencoder has the loss function

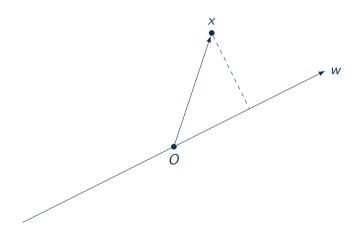
$$||X - D(E(X))||_F^2$$
. (9)

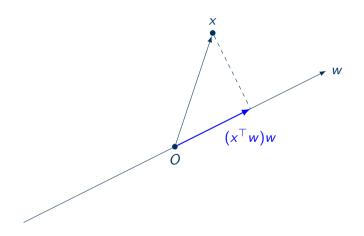
- The encoder *E* and the decoder *D* can be any function, including deep neural networks.
- When $E(x) = xW_1$ and $D(z) = zW_2$, we have

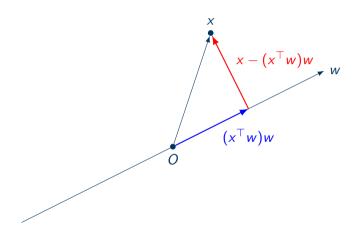
$$||X - XW_1W_2^{\top}||_F^2. (10)$$

• When E(x) = xW and $D(z) = zW^{\top}$, we have

$$||X - XWW^{\top}||_F^2. \tag{11}$$







• Maximize spread (or variance)

$$\sum_{i=1}^{n} \|(x_i^{\top} w) w\|_2^2 = w^{\top} X^{\top} X w$$
 (12)

Minimize distance

$$\sum_{i=1}^{n} \|x_i - (x_i^{\top} w) w\|_2^2 = \|X - Xww^{\top}\|_F^2$$
 (13)

• Don't forget $||w||_2^2 = 1$.

• The final objective is

$$\min_{W} ||X - XWW^{\top}||_{F}^{2}$$
s.t. $W^{\top}W = I$ (14)

s.t.
$$W^{\top}W = I$$
 (15)

Singular value decomposition (SVD)

Singular value decomposition (SVD)

• The singular value decomposition (SVD) of a matrix X is $U\Sigma V^{\top}$, where $U^{\top}U=I$, $V^{\top}V=I$,

$$\Sigma = \begin{bmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \sigma_d \end{bmatrix}, \tag{16}$$

and $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_d$.

Eckart-Young theorem

- Let $\Sigma_k = \text{diag}(\sigma_1, \dots, \sigma_k, 0, \dots, 0)$ where k < d.
- The matrix $U\Sigma_k V^{\top}$ is the optimal solution to

$$\min_{\hat{X}} ||X - \hat{X}||_F^2$$
s.t.
$$\operatorname{rank}(\hat{X}) \le k$$
(17)

s.t.
$$\operatorname{rank}(\hat{X}) \le k$$
 (18)

Eckart-Young theorem

- Let $\Sigma_k = \text{diag}(\sigma_1, \dots, \sigma_k, 0, \dots, 0)$ where $k \leq d$.
- The matrix $U\Sigma_k V^{\top}$ is the optimal solution to

$$\min_{\hat{X}} \quad \|X - \hat{X}\|_F^2 \tag{17}$$

s.t.
$$\operatorname{rank}(\hat{X}) \le k$$
 (18)

• The matrices $Z = U\Sigma_k$ and $W = V^{\top}$ are the optimal solution to

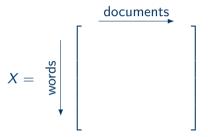
$$\min_{Z,W} ||X - ZW||_F^2$$
 (19)

s.t.
$$Z \in \mathbb{R}^{n \times k}$$
 (20)

$$W \in \mathbb{R}^{k \times d} \tag{21}$$

Latent semantic indexing

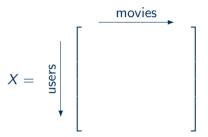
Create a term-document matrix



- Solve $\min_{Z,W} ||X ZW||_F^2$.
- The Z matrix provides a vector for every word, and the W matrix provides a vector for every document.

Matrix completion

• Create a user-movie matrix



- Solve $\min_{Z,W} ||X ZW||_F^2$.
- The reconstructed matrix ZW provides a guess of the empty entries in X.

Summary

- K-means = matrix factorization with assignment constraints
- Lloyd's algorithm = autoencoding with hard assignments
- PCA = linear autoencoder with encoder and decoder tied and orthogonality constraints
- SVD = low-rank matrix factorization

Variants of autoencoders

• A regular autoencoder

$$||X - D(E(X))||_F^2$$
. (22)

A denoising autoencoder

$$||X - D(E(n(X)))||_F^2,$$
 (23)

where n is a function that injects noise.

A variational autoencoder

$$\mathbb{E}_{z \sim q(z|x)}[-\log p(x|z)] + \mathbb{E}_{z \sim q(z|x)}\left[\log \frac{q(z)}{p(z)}\right]$$
 (24)