Topics - you should be able to explain after this week

• Neural network with logistic sigmoid activation functions
• Interpretation of the output
• Training of single-layer neural network with MSE / cross entropy
• Gradient descent
• Activation functions
• Training of multi-layer neural network – error back propagation (EBP)
• Relationships with linear regression and logistic regression
• Computation graphs
Recap: Perceptron structures and decision boundaries
Recap: Ability of neural networks

- **Universal approximation theorem**
 - "Univariate function and a set of affine functionals can uniformly approximate any continuous function of \(n \) real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function." (G. Cybenko (1989))

 A single-output node neural network with a single hidden layer with a finite neurons can approximate continuous (and discontinuous) functions.

 - V. Ismailov (2023) “A three layer neural network can represent any multivariate function” https://doi.org/10.1016/j.jmaa.2023.127096
Output of logistic sigmoid activation function

- Consider a single-layer network with a single output node logistic sigmoid activation function: (cf. logistic regression)

\[y = g(a) = \frac{1}{1 + \exp(-a)}, \quad \text{where} \quad a = \sum_{i=0}^{d} w_i x_i \]

- Consider a two class problem, with classes \(C_1 \) and \(C_2 \). The posterior probability of \(C_1 \):

\[
P(C_1|x) = \frac{p(x|C_1) P(C_1)}{p(x)} = \frac{p(x|C_1) P(C_1)}{p(x|C_1) P(C_1) + p(x|C_2) P(C_2)}
\]

\[
= \frac{1}{1 + \frac{p(x|C_2) P(C_2)}{p(x|C_1) P(C_1)}} = \frac{1}{1 + \exp \left(- \log \frac{p(x|C_1) P(C_1)}{p(x|C_2) P(C_2)} \right)}
\]
Logistic sigmoid function:

\[g(a) = \frac{1}{1 + \exp(-a)} \]

Posterior probabilities of two classes with Gaussian distributions:

\[p(S|x), p(T|x) \]
Training single layer neural network with MSE

- Training set: \(\mathcal{D} = \{(x_1, y_1), \ldots, (x_N, y_N)\} \), where \(y_i \in \{0, 1\} \)

- Error function:

\[
E_{\text{MSE}}(w) = \frac{1}{2} \sum_{n=1}^{N} \left(\hat{y}_n - y_n \right)^2
\]

\[
= \frac{1}{2} \sum_{n=1}^{N} \left(g(w^T x_n) - y_n \right)^2
\]

\[
= \frac{1}{2} \sum_{n=1}^{N} \left(g\left(\sum_{i=0}^{d} w_i x_{ni} \right) - y_n \right)^2
\]

- Definition of the training problem as an optimisation problem

\[
\min_{w} E_{\text{MSE}}(w)
\]
Training single layer neural network with MSE (cont.)

- Optimisation problem: \(\min_w E_{\text{MSE}}(w) \)
- No analytical (closed-form) solutions
- Employ an iterative method (requires initial values)
 e.g. Gradient descent, Newton’s method, Conjugate gradient methods
- Gradient descent
 (scalar form)
 \[w_i^{(\text{new})} \leftarrow w_i - \eta \frac{\partial}{\partial w_i} E(w), \quad (\eta > 0) \]
 (vector form)
 \[\mathbf{w}^{(\text{new})} \leftarrow \mathbf{w} - \eta \nabla_w E(w), \quad (\eta > 0) \]
- Online/stochastic gradient descent (cf. Batch training)
 Sample \((x_n, y_n)\) from the data set and update the weights at a time.
Gradient descent

\[w_i^{(\text{new})} \leftarrow w_i - \eta \frac{\partial}{\partial w_i} E(w), \quad (\eta > 0) \]
Training single layer neural network with MSE (cont.)

\[E_{\text{MSE}}(w) = \sum_{n=1}^{N} E_n, \quad \text{where} \quad E_n = \frac{1}{2} (\hat{y}_n - y_n)^2 = \frac{1}{2} \left(g \left(\sum_{i=0}^{d} w_i x_{ni} \right) - y_n \right)^2 \]

where \(\hat{y}_n = g(a_n), \quad a_n = \sum_{i=0}^{d} w_i x_{ni}, \quad \frac{\partial a_n}{\partial w_i} = x_{ni} \)

\[
\frac{\partial E_n(w)}{\partial w_i} = \frac{\partial E_n(w)}{\partial \hat{y}_n} \frac{\partial \hat{y}_n}{\partial a_n} \frac{\partial a_n}{\partial w_i} \\
= (\hat{y}_n - y_n) \frac{\partial g(a_n)}{\partial a_n} \frac{\partial a_n}{\partial w_i} \\
= (\hat{y}_n - y_n) g'(a_n) x_{ni} \\
= (\hat{y}_n - y_n) g(a_n) (1 - g(a_n)) x_{ni} \quad \text{if} \quad g(\cdot) \text{ is a sigmoid function} \]
Another training criterion – cross-entropy error

- Training problem with the mean squared error (MSE) criterion with the sigmoid function

\[E_{MSE}(w) = \frac{1}{2} \sum_{n=1}^{N} (\hat{y}_n - y_n)^2, \quad \hat{y}_n = g(a_n) \]

\[\frac{\partial E_{MSE}(w)}{\partial w_i} = \sum_{n=1}^{N} (\hat{y}_n - y_n) g'(a_n) x_{ni}, \quad g'(a) = g(a)(1 - g(a)) \]

\[g'(a) \approx 0 \text{ for such } a \text{ that } g(a) \approx 0 \text{ or } 1. \]

- Cross-entropy error

\[E_H(w) = -\frac{1}{N} \sum_{n=1}^{N} \{ y_n \log \hat{y}_n + (1 - y_n) \log (1 - \hat{y}_n) \} \]

For multi classes, \[E_H(w) = -\frac{1}{N} \sum_{n=1}^{N} \sum_{i} y_i \log \hat{y}_i \]

It can be shown that:

\[\frac{\partial E_H(w)}{\partial w_i} = \frac{1}{N} \sum_{n=1}^{N} (\hat{y}_n - y_n) x_{ni} \]
Other activation functions

- **Tanh**
 \[g(a) = \tanh(a) = \frac{1 - e^{-2a}}{1 + e^{-2a}} \]
 - Mapping \((-\infty, +\infty) \rightarrow (-1, 1)\)
 - 0 (zero) centred \(\rightarrow\) faster convergence than sigmoid

- **ReLU (Rectified Linear Unit)**
 \[g(a) = \max(0, a) \]
 - Several times faster than tanh.
 - 'Dying ReLU' problem -- a unit of outputting 0 always
 \(\rightarrow\) use Leaky ReLU instead

For details, see Kevin Murphy, “Probabilistic Machine Learning: An Introduction”, Sec. 13.4.3.
Single-layer network with multiple output nodes

\[y_1(x) = g(w_1^T x + w_{10}) \]
\[\vdots \]
\[y_K(x) = g(w_K^T x + w_{K0}) \]

\[\begin{pmatrix} y_1 \\ \vdots \\ y_K \end{pmatrix} = g \left(\begin{pmatrix} w_{10} & w_{11} & \cdots & w_{1d} \\ \vdots & \vdots & \cdots & \vdots \\ w_{K0} & w_{K1} & \cdots & w_{Kd} \end{pmatrix} \begin{pmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{pmatrix} \right) \]

\[y = g(\hat{W}\hat{x}) \]

- \(K \) output nodes: \(y_1, \ldots, y_K \).
- For \(x_n = (x_{n0}, \ldots, x_{nD})^T \),

\[\hat{y}_{nk} = g \left(\sum_{d=0}^{d} w_{kd} x_{nd} \right) = g(a_{nk}), \quad a_{nk} = \sum_{d=0}^{d} w_{kd} x_{nd} \]
Training of single-layer network with multiple output nodes

• Training set: $\mathcal{D} = \{(x_1, y_1), \ldots, (x_N, y_N)\}$
 where $y_n = (y_{n1}, \ldots, y_{nK})$ and $y_{nk} \in \{0, 1\}$

• Error function:

$$E_{\text{MSE}}(w) = \frac{1}{2} \sum_{n=1}^{N} \left\| \hat{y}_n - y_n \right\|^2$$

$$= \sum_{n=1}^{N} E_n, \quad \text{where} \quad E_n = \frac{1}{2} \left\| \hat{y}_n - y_n \right\|^2 = \frac{1}{2} \sum_{k=1}^{K} (\hat{y}_{nk} - y_{nk})^2$$

• Training with the gradient descent:

$$w_{ki} \leftarrow w_{ki} - \eta \frac{\partial E}{\partial w_{ki}}, \quad (\eta > 0)$$
The derivatives of the error function (single-layer)

\[E_n = \frac{1}{2} \sum_{k=1}^{K} (\hat{y}_{nk} - y_{nk})^2 \]

\[\hat{y}_{nk} = g(a_{nk}) \]

\[a_{nk} = \sum_{i=0}^{D} w_{ki} x_{ni} \]

\[\frac{\partial E_n}{\partial w_{ki}} = \frac{\partial E_n}{\partial \hat{y}_{nk}} \frac{\partial \hat{y}_{nk}}{\partial a_{nk}} \frac{\partial a_{nk}}{\partial w_{ki}} \]

\[= (\hat{y}_{nk} - y_{nk}) g'(a_{nk}) x_{ni} \]
Normalisation of output nodes - softmax

• Outputs with sigmoid activation function:

\[\sum_{k=1}^{K} y_k \neq 1 \]

\[y_k = g(a_k) = \frac{1}{1 + \exp(-a_k)}, \quad a_k = \sum_{i=0}^{d} w_{ki} x_i \]

• Softmax activation function:

\[y_k = \frac{\exp(a_k)}{\sum_{\ell=1}^{K} \exp(a_\ell)} \]

• Properties of the softmax function

(i) \(0 \leq y_k \leq 1 \) \quad (iii) differentiable

(ii) \(\sum_{k=1}^{K} y_k = 1 \) \quad (iv) \(y_k \approx P(C_k|x) = \frac{p(x|C_k)P(C_k)}{\sum_{\ell=1}^{K} p(x|C_\ell)P(C_\ell)} \)
Training of multi-layer neural networks

Multi-layer perceptron (MLP)

- Hidden-to-output weights:

 \[w_{kj}^{(2)} \leftarrow w_{kj}^{(2)} - \eta \frac{\partial E}{\partial w_{kj}^{(2)}} \]

- Input-to-hidden weights:

 \[w_{ji}^{(1)} \leftarrow w_{ji}^{(1)} - \eta \frac{\partial E}{\partial w_{ji}^{(1)}} \]
Training of MLP

1940s Warren McCulloch and Walter Pitts : 'threshold logic'
 Donald Hebb : 'Hebbian learning'
1957 Frank Rosenblatt : 'Perceptron'
1969 Marvin Minsky and Seymour Papert : limitations of neural networks
1980 Kunihiro Fukushima: 'Neocognitoron'
The derivatives of the error function (two-layers)

\[E_n = \frac{1}{2} \sum_{k=1}^{K} (\hat{y}_{nk} - y_{nk})^2 \]

\[\hat{y}_{nk} = g(a_{nk}), \quad a_{nk} = \sum_{j=1}^{M} w_{kj}^{(2)} z_{nj} \]

\[z_{nj} = h(b_{nj}), \quad b_{nj} = \sum_{i=0}^{d} w_{ji}^{(1)} x_{ni} \]

\[\frac{\partial E_n}{\partial w_{kj}^{(2)}} = \frac{\partial E_n}{\partial \hat{y}_{nk}} \frac{\partial \hat{y}_{nk}}{\partial a_{nk}} \frac{\partial a_{nk}}{\partial w_{kj}^{(2)}} = \left(\hat{y}_{nk} - y_{nk} \right) g'(a_{nk}) z_{nj} \]

\[\frac{\partial E_n}{\partial w_{ji}^{(1)}} = \frac{\partial E_n}{\partial z_{nj}} \frac{\partial z_{nj}}{\partial b_{nj}} \frac{\partial b_{nj}}{\partial w_{ji}^{(1)}} = \left(\sum_{k=1}^{K} \frac{\partial E_n}{\partial \hat{y}_{nk}} \frac{\partial \hat{y}_{nk}}{\partial z_{nj}} \right) h'(b_{nj}) x_{ni} \]

\[= \left(\sum_{k=1}^{K} (\hat{y}_{nk} - y_{nk}) g'(a_{nk}) w_{kj}^{(2)} \right) h'(b_{nj}) x_{ni} \]
Error back propagation

$$\frac{\partial E_n}{\partial w_{kj}^{(2)}} = \frac{\partial E_n}{\partial \hat{y}_{nk}} \frac{\partial \hat{y}_{nk}}{\partial a_{nk}} \frac{\partial a_{nk}}{\partial w_{kj}^{(2)}}$$

$$= (\hat{y}_{nk} - y_{nk}) g'(a_{nk}) z_{nj}$$

$$= \delta_{nk}^{(2)} z_{nj}, \quad \delta_{nk}^{(2)} = \frac{\partial E_n}{\partial a_{nk}}$$

$$\frac{\partial E_n}{\partial w_{ji}^{(1)}} = \frac{\partial E_n}{\partial z_{nj}} \frac{\partial z_{nj}}{\partial b_{nj}} \frac{\partial b_{nj}}{\partial w_{ji}^{(1)}}$$

$$= \left(\sum_{k=1}^{K} (\hat{y}_{nk} - y_{nk}) g'(a_{nk}) w_{kj}^{(2)} \right) h'(b_{nj}) x_{ni}$$

$$= \left(\sum_{k=1}^{K} \delta_{nk}^{(2)} w_{kj}^{(2)} \right) h'(b_{nj}) x_{ni}$$
Practical representations - computation graph

- Consider a two-layer neural network with softmax output
 - 1st layer with sigmoid activation functions:
 \[z = g(x) = \sigma(W_1 x + w_{10}) \]
 - 2nd layer with a softmax activation function:
 \[\hat{y} = \text{softmax}(W_2 z + w_{20}) \]
 - Cross-entropy loss function
 \[L = - \sum y_i \log \hat{y}_i = - \log \hat{y}_c = - \log \text{softmax}(W_2 z + w_{20})_c \]
Computation graph

Represents computation as a directed graph comprising of simple operations on vectors and matrices ⇒ Automatic differentiation (NE)

$L = f(x) = f_6(f_5(f_4(f_3(f_2(f_1(x))))))$

$f = f_6 \circ f_5 \circ f_4 \circ f_3 \circ f_2 \circ f_1$

$f_1 : x_2 = W_1 x$
$f_2 : x_3 = x_2 + w_{10}$
$f_3 : x_4 = \sigma(x_3)$
$f_4 : x_5 = W_2 x_4$
$f_5 : x_6 = x_5 + w_{20}$
$f_6 : L = \log \text{softmax}(x_6)_{i=y}$
Computation graph (cont.)

\[
\frac{\partial L}{\partial W_2} = \frac{\partial L}{\partial x_6} \frac{\partial x_6}{\partial x_5} \frac{\partial x_5}{\partial W_2}
\]

\[
\frac{\partial L}{\partial W_1} = \frac{\partial L}{\partial x_6} \frac{\partial x_6}{\partial x_5} \frac{\partial x_5}{\partial x_4} \frac{\partial x_4}{\partial x_3} \frac{\partial x_3}{\partial W_1}
\]

NB: matrix transpose is omitted for simplicity

- Forward pass: compute \(x_2, \ldots, x_6, \hat{y}, L\).
- Backward pass: compute \(\frac{\partial L}{\partial w_{20}}, \frac{\partial L}{\partial W_2}, \frac{\partial L}{\partial w_{10}}, \frac{\partial L}{\partial W_1}\).
Computation graph – cross entropy layer

\[L = -\log \hat{y}_c = -\log \frac{e^{ac}}{\sum_j e^{aj}}, \] where \(c \) is the true class, \(\mathbf{a} = \mathbf{x}_4 \)

\[
\frac{\partial L}{\partial a_i} = \frac{\partial}{\partial a_i} \left(\log(\sum_j e^{aj}) - a_c \right) = \frac{e^{a_i}}{\sum_j e^{aj}} - \mathbb{1}_{i=c} = \hat{y}_i - \mathbb{1}_{i=c}
\]

\[
\frac{\partial L}{\partial \mathbf{x}_6} = \hat{\mathbf{y}} - \mathbf{y}
\]
Quizzes

• On slide 12, show the following:

\[
\frac{\partial E_H(w)}{\partial w_i} = \frac{1}{N} \sum_{n=1}^{N} (\hat{y}_n - y_n) x_{ni}
\]

• On Slide 24, find the following:

 - \(\frac{\partial x_6}{\partial w_{20}} \)
 - \(\frac{\partial x_5}{\partial W_2} \)
 - \(\frac{\partial x_4}{\partial x_3} \)
Appendix – derivatives

• Derivatives of functions of one variable
\[
\frac{df}{dx} = f'(x) = \lim_{\epsilon \to 0} \frac{f(x + \epsilon) - f(x)}{\epsilon}
\]
e.g., \(f(x) = 4x^3, \ f'(x) = 12x^2 \)

• Partial derivatives of functions of more than one variable
\[
\frac{\partial f}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon, y) - f(x, y)}{\epsilon}
\]
e.g., \(f(x, y) = y^3x^2, \ \frac{\partial f}{\partial x} = 2y^3x \)
Derivative rules

<table>
<thead>
<tr>
<th>Function</th>
<th>Derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>(c)</td>
</tr>
<tr>
<td>(x)</td>
<td>1</td>
</tr>
<tr>
<td>Power</td>
<td>(x^n)</td>
</tr>
<tr>
<td>(\frac{1}{x})</td>
<td>(-\frac{1}{x^2})</td>
</tr>
<tr>
<td>(\sqrt{x})</td>
<td>(\frac{1}{2}x^{-\frac{1}{2}})</td>
</tr>
<tr>
<td>Exponential</td>
<td>(e^x)</td>
</tr>
<tr>
<td>Logarithms</td>
<td>(\ln(x))</td>
</tr>
<tr>
<td>Sum rule</td>
<td>(f(x) + g(x))</td>
</tr>
<tr>
<td>Product rule</td>
<td>(f(x)g(x))</td>
</tr>
<tr>
<td>Reciprocal rule</td>
<td>(\frac{1}{f(x)})</td>
</tr>
<tr>
<td>(\frac{f(x)}{g(x)})</td>
<td>(-\frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)})</td>
</tr>
<tr>
<td>Chain rule</td>
<td>(f(g(x)))</td>
</tr>
</tbody>
</table>

\[
z = f(y), \ y = g(x) \quad \frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}
\]
Vectors of derivatives

Consider $f(x)$, where $x = (x_1, \ldots, x_d)^T$

Notation: all partial derivatives put in a vector:

$$\nabla_x f(x) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_d} \right)^T$$

Example: $f(x) = x_1^3 x_2^2$

$$\nabla_x f(x) = \left(3x_1^2 x_2^2, 2x_1^3 x_2 \right)$$

Fact: $f(x)$ changes most quickly in direction $\nabla_x f(x)$