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® For mean-squared error
n
L=> (w'x—y) = Xw -yl (1)
i=1
we know that

W= (XTX)"XTy (2)

is the solution of V,,L = 0.

® How do we know w* is the optimal point?
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® For log loss

L= Z log (1 + exp(—y,-quZ)(X;))) (3)

i=1

we cannot even solve V,, L = 0.
® How do we find the optimal solution?

e Could we find an approximate solution?
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Convex optimization
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Optimization

® Suppose f : R — R.
® The goal is solve

min f(x). (4)
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Optimization

® Suppose f : R — R.
® The goal is solve

min f(x). (4)

X

® |t means miny f(x) < f(y) for any y.
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Optimization

Suppose f : RY — R.
The goal is solve

mXin f(x).
It means min, f(x) < f(y) for any y.

We want to find x* such that f(x*) = min, f(x).

The point x* is called the optimal solution or the minimizer of f.
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Optimization

Suppose f : RY — R.
The goal is solve

min f(x). (4)

X

It means min, f(x) < f(y) for any y.
We want to find x* such that f(x*) = min, f(x).
The point x* is called the optimal solution or the minimizer of f.

There might not be a minimizer or there might have many, not just one. (In most
case, we are content with finding one.)
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Convex functions

A function f is convex if
flax + (1 —a)y) < af(x) + (1 - a)f(y), (5)

for every x, y,and 0 < a < 1.
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ax+(1—-a)y
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ax+(1—-a)y
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af(x)+ (1 —a)f(y)
VI

flax+ (1 —a)y)
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Properties of convex functions

If f is convex, then

F(x) 2 f(y) + VF(y) " (x — ). (6)

for any x and y.
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Properties of convex functions

If f is convex, then

F(x) 2 f(y) + VF(y) " (x — ). (6)

for any x and y.

Proof:

flax+ (1 —a)y) < af(x) + (1 — a)f(y)
af(y) +f(y +a(x —y)) — f(y) < af(x)

Fly) + VE(y) (x —y) < f(x)
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Supporting hyperplanes
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Supporting hyperplanes
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® |s the mean-squared error
2
L=[Xw—yl3 (7)

convex in w?

® The definition itself is not always easy to use for checking convexity.
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A sufficient condition: Second derivative

e A matrix H is positive semidefinite if v Hv > 0 for any v.

® |f the Hessian of f exists and is positive semidefinite everywhere, then f is convex.
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Convexity of squared distance

® The squared distance ¢(s) = (s — s’)? is convex in s.
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Convexity of squared distance

® The squared distance ¢(s) = (s — s’)? is convex in s.

0%t
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Convexity of the /, norm

® Show that f(x) = [|x||3 is convex in x.
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Convexity of the /, norm

® Show that f(x) = [|x||3 is convex in x.

O0x;0x; N 8xl.2

020 020
0 =2 (9)
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Affine transform preserves convexity

e If f is convex, then g(x) = f(Ax + b) is also convex.
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Affine transform preserves convexity

e If f is convex, then g(x) = f(Ax + b) is also convex.

glax+ (1 —a)y) = f(a(Ax + b) + (1 — a)(Ay + b)) (10)
< af(Ax+ b) + (1 — a)f(Ay + b) = ag(x) + (1 — a)g(y) (11)
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Nonnegative weighted sum of convex functions

® |f fi,...,fr are convex, then f = B1f; + - -+ + Bifk is also convex when
/617 oo 7/8/( > 0
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Nonnegative weighted sum of convex functions

® |f fi,...,fr are convex, then f = B1f; + - -+ + Bifk is also convex when
By 8k =0
flax+ (1 —a)y) = fifi(ax+ (1 —a)y) + - + Bufu(ax + (1 — a)y) (12)
< Brafi(x) + G1(1 — a)f(y) + - - + Brafi(x) + Br(1 — a)fi(y)
(13)
= a(P1h(x) + -+ Befi(x)) + (1 = ) (Brfi(y) + - - + Bifi(y))
(14)

=af(x)+ (1 —a)f(y) (15)
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Convexity of MSE

® The mean-squared error is

n

L=> (w'x—y)? = Xw - yl5. (16)
i=1

® \We know that the squared distance is convex.

® Use the affine transform and nonnegative weighted sum to obtain the
mean-squared error.
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Optimality condition

If fis convex and
Vi(x*)=0 (17)

at x*, then x* is the minimizer of f.
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Optimality condition

If f is convex and

Vi(x*)=0 (17)
at x*, then x* is the minimizer of f.
Proof: Suppose Vf(x*) = 0. For any x,

f(x)>f(x*)+ (x— x*)TVf(x*) = f(x*). (18)

17/23



Optimal solution of MSE

® The mean-squared error is
n
L= (w'o(x) —yi)* = | Xw - yl3. (19)
i=1

® The solution to V,,L =0is w* = (X" X)"1XTy.

® Because L is convex in w, w* is a minimizer of L.
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Convexity of log loss

® The log loss in the binary case is

N
L= Z log <1 + exp(—y,-WTx,-)> . (20)

i=1
® We just need to show ¢(s) = log(1 + exp(—s)) is convex in s.

® Use affine transform and nonnegative weighted sum to obtain the log loss.
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ol —exp(—s) 1

ds  1-+exp(—s) 1+4exp(—s) ! (21)
o?l 1 exp(—s) 1 1
0s2  1+exp(—s)1+exp(—s) 1+ exp(—s) (1 1+ exp(—s)> =0 (22)
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Strictly convex functions

A function f is strictly convex if
flax+ (1 — a)y) < af(x) + (1 — a)f(y), (23)

forevery x # y,and 0 < a < 1.
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Properties of strictly convex functions

e If f is strictly convex, then
fF(x) > fly)+ VE(y) (x—y), (24)

for any x # y.
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Properties of strictly convex functions

e If f is strictly convex, then
F(x) > f(y) + V() (x - y),
for any x # y.
e A matrix H is positive definite if v Hv > 0 for any v # 0.

® |f the Hessian of f is positive definite, then f is strictly convex.

(24)

22/23



Uniqueness of minimizers for strictly convex functions

A strictly convex function f has a unique minimizer.
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Uniqueness of minimizers for strictly convex functions

A strictly convex function f has a unique minimizer.

Proof: Suppose x* is a minimizer of f, i.e., Vf(x*) = 0. Since f is strictly convex,
F(x) > f(y) + VE(y) (x = y) (25)

for any x # y. In particular, if we let y = x*
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