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• For mean-squared error

L =
n∑

i=1

(w⊤xi − yi )
2 = ∥Xw − y∥22, (1)

we know that

w∗ = (X⊤X )−1X⊤y (2)

is the solution of ∇wL = 0.

• How do we know w∗ is the optimal point?
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• For log loss

L =
n∑

i=1

log

(
1 + exp(−yiw

⊤ϕ(xi ))

)
(3)

we cannot even solve ∇wL = 0.

• How do we find the optimal solution?

• Could we find an approximate solution?
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Convex optimization

w

L

w∗

∂L

∂w
= 0

4 / 23



Optimization

• Suppose f : Rd → R.

• The goal is solve

min
x

f (x). (4)

• It means minx f (x) ≤ f (y) for any y .

• We want to find x∗ such that f (x∗) = minx f (x).

• The point x∗ is called the optimal solution or the minimizer of f .

• There might not be a minimizer or there might have many, not just one. (In most
case, we are content with finding one.)
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Convex functions

A function f is convex if

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y), (5)

for every x , y , and 0 ≤ α ≤ 1.
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x y

αx + (1− α)y

αf (x) + (1− α)f (y)

≤

f (αx + (1− α)y)
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Properties of convex functions

If f is convex, then

f (x) ≥ f (y) +∇f (y)⊤(x − y), (6)

for any x and y .

Proof:

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)

αf (y) + f (y + α(x − y))− f (y) ≤ αf (x)

f (y) +
f (y + α(x − y))− f (y)

α
≤ f (x)

f (y) +∇f (y)⊤(x − y) ≤ f (x)
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Supporting hyperplanes
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Supporting hyperplanes
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• Is the mean-squared error

L = ∥Xw − y∥22 (7)

convex in w?

• The definition itself is not always easy to use for checking convexity.
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A sufficient condition: Second derivative

• A matrix H is positive semidefinite if v⊤Hv ≥ 0 for any v .

• If the Hessian of f exists and is positive semidefinite everywhere, then f is convex.
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Convexity of squared distance

• The squared distance ℓ(s) = (s − s ′)2 is convex in s.

∂2ℓ

∂s2
= 2 ≥ 0 (8)
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Convexity of the ℓ2 norm

• Show that f (x) = ∥x∥22 is convex in x .

∂2ℓ

∂xi∂xj
= 0

∂2ℓ

∂x2i
= 2 (9)
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Affine transform preserves convexity

• If f is convex, then g(x) = f (Ax + b) is also convex.

g(αx + (1− α)y) = f (α(Ax + b) + (1− α)(Ay + b)) (10)

≤ αf (Ax + b) + (1− α)f (Ay + b) = αg(x) + (1− α)g(y) (11)
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Nonnegative weighted sum of convex functions

• If f1, . . . , fk are convex, then f = β1f1 + · · ·+ βk fk is also convex when
β1, . . . , βk ≥ 0

f (αx + (1− α)y) = β1f1(αx + (1− α)y) + · · ·+ βk fk(αx + (1− α)y) (12)

≤ β1αf1(x) + β1(1− α)f (y) + · · ·+ βkαfk(x) + βk(1− α)fk(y)
(13)

= α(β1f1(x) + · · ·+ βk fk(x)) + (1− α)(β1f1(y) + · · ·+ βk fk(y))
(14)

= αf (x) + (1− α)f (y) (15)
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Convexity of MSE

• The mean-squared error is

L =
n∑

i=1

(w⊤xi − yi )
2 = ∥Xw − y∥22. (16)

• We know that the squared distance is convex.

• Use the affine transform and nonnegative weighted sum to obtain the
mean-squared error.
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Optimality condition

If f is convex and

∇f (x∗) = 0 (17)

at x∗, then x∗ is the minimizer of f .

Proof: Suppose ∇f (x∗) = 0. For any x ,

f (x) ≥ f (x∗) + (x − x∗)⊤∇f (x∗) = f (x∗). (18)
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Optimal solution of MSE

• The mean-squared error is

L =
n∑

i=1

(w⊤ϕ(xi )− yi )
2 = ∥Xw − y∥22. (19)

• The solution to ∇wL = 0 is w∗ = (X⊤X )−1X⊤y .

• Because L is convex in w , w∗ is a minimizer of L.
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Convexity of log loss

• The log loss in the binary case is

L =
N∑
i=1

log

(
1 + exp(−yiw

⊤xi )

)
. (20)

• We just need to show ℓ(s) = log(1 + exp(−s)) is convex in s.

• Use affine transform and nonnegative weighted sum to obtain the log loss.
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∂ℓ

∂s
=

− exp(−s)

1 + exp(−s)
=

1

1 + exp(−s)
− 1 (21)

∂2ℓ

∂s2
=

1

1 + exp(−s)

exp(−s)

1 + exp(−s)
=

1

1 + exp(−s)

(
1− 1

1 + exp(−s)

)
≥ 0 (22)
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Strictly convex functions

A function f is strictly convex if

f (αx + (1− α)y) < αf (x) + (1− α)f (y), (23)

for every x ̸= y , and 0 ≤ α ≤ 1.
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Properties of strictly convex functions

• If f is strictly convex, then

f (x) > f (y) +∇f (y)⊤(x − y), (24)

for any x ̸= y .

• A matrix H is positive definite if v⊤Hv > 0 for any v ̸= 0.

• If the Hessian of f is positive definite, then f is strictly convex.
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Uniqueness of minimizers for strictly convex functions

A strictly convex function f has a unique minimizer.

Proof: Suppose x∗ is a minimizer of f , i.e., ∇f (x∗) = 0. Since f is strictly convex,

f (x) > f (y) +∇f (y)⊤(x − y) (25)

for any x ̸= y . In particular, if we let y = x∗
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