Machine Learning: Optimization 1

Hao Tang

January 31, 2024

• For mean-squared error

$$L = \sum_{i=1}^{n} (w^{\top} x_i - y_i)^2 = ||Xw - y||_2^2,$$
 (1)

we know that

$$w^* = (X^{\top} X)^{-1} X^{\top} y \tag{2}$$

is the solution of $\nabla_w L = 0$.

• How do we know w^* is the optimal point?

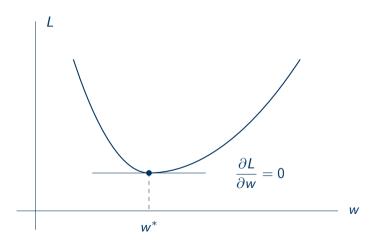
For log loss

$$L = \sum_{i=1}^{n} \log \left(1 + \exp(-y_i w^{\top} \phi(x_i)) \right)$$
 (3)

we cannot even solve $\nabla_w L = 0$.

- How do we find the optimal solution?
- Could we find an approximate solution?

Convex optimization



- Suppose $f: \mathbb{R}^d \to \mathbb{R}$.
- The goal is solve

$$\min_{x} f(x). \tag{4}$$

- Suppose $f: \mathbb{R}^d \to \mathbb{R}$.
- The goal is solve

$$\min_{x} f(x). \tag{4}$$

• It means $\min_x f(x) \le f(y)$ for any y.

- Suppose $f: \mathbb{R}^d \to \mathbb{R}$.
- The goal is solve

$$\min_{x} f(x). \tag{4}$$

- It means $\min_x f(x) \le f(y)$ for any y.
- We want to find x^* such that $f(x^*) = \min_x f(x)$.
- The point x^* is called the **optimal solution** or the **minimizer** of f.

- Suppose $f: \mathbb{R}^d \to \mathbb{R}$.
- The goal is solve

$$\min_{x} f(x). \tag{4}$$

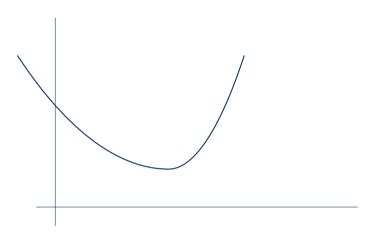
- It means $\min_{x} f(x) \le f(y)$ for any y.
- We want to find x^* such that $f(x^*) = \min_x f(x)$.
- The point x^* is called the **optimal solution** or the **minimizer** of f.
- There might not be a minimizer or there might have many, not just one. (In most case, we are content with finding one.)

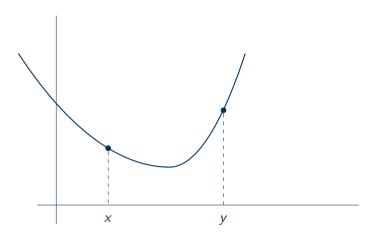
Convex functions

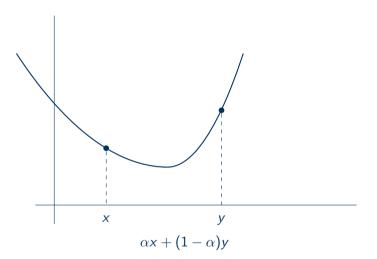
A function f is **convex** if

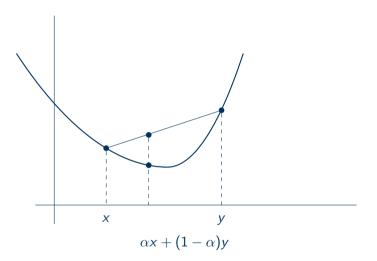
$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y), \tag{5}$$

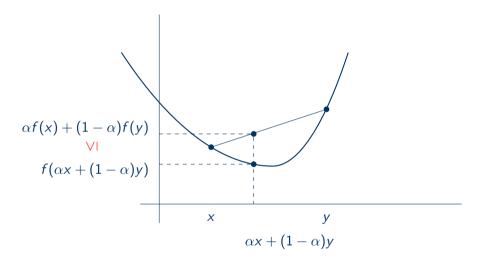
for every x, y, and $0 \le \alpha \le 1$.











Properties of convex functions

If f is convex, then

$$f(x) \ge f(y) + \nabla f(y)^{\top} (x - y), \tag{6}$$

for any x and y.

Properties of convex functions

If f is convex, then

$$f(x) \ge f(y) + \nabla f(y)^{\top} (x - y), \tag{6}$$

for any x and y.

Proof:

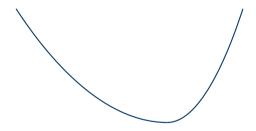
$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

$$\alpha f(y) + f(y + \alpha(x - y)) - f(y) \le \alpha f(x)$$

$$f(y) + \frac{f(y + \alpha(x - y)) - f(y)}{\alpha} \le f(x)$$

$$f(y) + \nabla f(y)^{\top}(x - y) \le f(x)$$

Supporting hyperplanes



Supporting hyperplanes

• Is the mean-squared error

$$L = \|Xw - y\|_2^2 \tag{7}$$

convex in w?

• The definition itself is not always easy to use for checking convexity.

A sufficient condition: Second derivative

- A matrix H is positive semidefinite if $v^T H v \ge 0$ for any v.
- If the Hessian of f exists and is positive semidefinite everywhere, then f is convex.

Convexity of squared distance

• The squared distance $\ell(s) = (s - s')^2$ is convex in s.

Convexity of squared distance

• The squared distance $\ell(s) = (s - s')^2$ is convex in s.

$$\frac{\partial^2 \ell}{\partial s^2} = 2 \ge 0 \tag{8}$$

Convexity of the ℓ_2 norm

• Show that $f(x) = ||x||_2^2$ is convex in x.

Convexity of the ℓ_2 norm

• Show that $f(x) = ||x||_2^2$ is convex in x.

$$\frac{\partial^2 \ell}{\partial x_i \partial x_i} = 0 \qquad \frac{\partial^2 \ell}{\partial x_i^2} = 2 \tag{9}$$

Affine transform preserves convexity

• If f is convex, then g(x) = f(Ax + b) is also convex.

Affine transform preserves convexity

• If f is convex, then g(x) = f(Ax + b) is also convex.

$$g(\alpha x + (1 - \alpha)y) = f(\alpha(Ax + b) + (1 - \alpha)(Ay + b))$$

$$\leq \alpha f(Ax + b) + (1 - \alpha)f(Ay + b) = \alpha g(x) + (1 - \alpha)g(y)$$
 (11)

Nonnegative weighted sum of convex functions

• If f_1, \ldots, f_k are convex, then $f = \beta_1 f_1 + \cdots + \beta_k f_k$ is also convex when $\beta_1, \ldots, \beta_k \ge 0$

Nonnegative weighted sum of convex functions

• If f_1, \ldots, f_k are convex, then $f = \beta_1 f_1 + \cdots + \beta_k f_k$ is also convex when $\beta_1, \ldots, \beta_k \geq 0$

$$f(\alpha x + (1 - \alpha)y) = \beta_{1} f_{1}(\alpha x + (1 - \alpha)y) + \dots + \beta_{k} f_{k}(\alpha x + (1 - \alpha)y)$$

$$\leq \beta_{1} \alpha f_{1}(x) + \beta_{1}(1 - \alpha)f(y) + \dots + \beta_{k} \alpha f_{k}(x) + \beta_{k}(1 - \alpha)f_{k}(y)$$

$$(13)$$

$$= \alpha(\beta_{1} f_{1}(x) + \dots + \beta_{k} f_{k}(x)) + (1 - \alpha)(\beta_{1} f_{1}(y) + \dots + \beta_{k} f_{k}(y))$$

$$(14)$$

$$= \alpha f(x) + (1 - \alpha)f(y)$$

$$(15)$$

Convexity of MSE

• The mean-squared error is

$$L = \sum_{i=1}^{n} (w^{\top} x_i - y_i)^2 = ||Xw - y||_2^2.$$
 (16)

- We know that the squared distance is convex.
- Use the affine transform and nonnegative weighted sum to obtain the mean-squared error.

Optimality condition

If f is convex and

$$\nabla f(x^*) = 0 \tag{17}$$

at x^* , then x^* is the minimizer of f.

Optimality condition

If f is convex and

$$\nabla f(x^*) = 0 \tag{17}$$

at x^* , then x^* is the minimizer of f.

Proof: Suppose $\nabla f(x^*) = 0$. For any x,

$$f(x) \ge f(x^*) + (x - x^*)^{\top} \nabla f(x^*) = f(x^*).$$
 (18)

Optimal solution of MSE

• The mean-squared error is

$$L = \sum_{i=1}^{n} (w^{\top} \phi(x_i) - y_i)^2 = \|Xw - y\|_2^2.$$
 (19)

- The solution to $\nabla_w L = 0$ is $w^* = (X^\top X)^{-1} X^\top y$.
- Because L is convex in w, w^* is a minimizer of L.

Convexity of log loss

• The log loss in the binary case is

$$L = \sum_{i=1}^{N} \log \left(1 + \exp(-y_i w^{\top} x_i) \right). \tag{20}$$

- We just need to show $\ell(s) = \log(1 + \exp(-s))$ is convex in s.
- Use affine transform and nonnegative weighted sum to obtain the log loss.

$$\frac{\partial \ell}{\partial s} = \frac{-\exp(-s)}{1 + \exp(-s)} = \frac{1}{1 + \exp(-s)} - 1 \tag{21}$$

$$\frac{\partial^2 \ell}{\partial s^2} = \frac{1}{1 + \exp(-s)} \frac{\exp(-s)}{1 + \exp(-s)} = \frac{1}{1 + \exp(-s)} \left(1 - \frac{1}{1 + \exp(-s)} \right) \ge 0$$
 (22)

Strictly convex functions

A function f is **strictly convex** if

$$f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y), \tag{23}$$

for every $x \neq y$, and $0 \leq \alpha \leq 1$.

Properties of strictly convex functions

• If *f* is strictly convex, then

$$f(x) > f(y) + \nabla f(y)^{\top} (x - y), \tag{24}$$

for any $x \neq y$.

Properties of strictly convex functions

• If *f* is strictly convex, then

$$f(x) > f(y) + \nabla f(y)^{\top} (x - y), \tag{24}$$

for any $x \neq y$.

- A matrix H is positive definite if $v^{\top}Hv > 0$ for any $v \neq 0$.
- If the Hessian of *f* is positive definite, then *f* is strictly convex.

Uniqueness of minimizers for strictly convex functions

A strictly convex function f has a unique minimizer.

Uniqueness of minimizers for strictly convex functions

A strictly convex function f has a unique minimizer.

Proof: Suppose x^* is a minimizer of f, i.e., $\nabla f(x^*) = 0$. Since f is strictly convex,

$$f(x) > f(y) + \nabla f(y)^{\top} (x - y)$$
(25)

for any $x \neq y$. In particular, if we let $y = x^*$