Machine Learning: Optimization 1

Hao Tang

January 31, 2024

- For mean-squared error

$$
\begin{equation*}
L=\sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}=\|X w-y\|_{2}^{2}, \tag{1}
\end{equation*}
$$

we know that

$$
\begin{equation*}
w^{*}=\left(X^{\top} X\right)^{-1} X^{\top} y \tag{2}
\end{equation*}
$$

is the solution of $\nabla_{w} L=0$.

- How do we know w^{*} is the optimal point?
- For log loss

$$
\begin{equation*}
L=\sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} w^{\top} \phi\left(x_{i}\right)\right)\right) \tag{3}
\end{equation*}
$$

we cannot even solve $\nabla_{w} L=0$.

- How do we find the optimal solution?
- Could we find an approximate solution?

Convex optimization

Optimization

- Suppose $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
- The goal is solve

$$
\begin{equation*}
\min _{x} f(x) . \tag{4}
\end{equation*}
$$

Optimization

- Suppose $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
- The goal is solve

$$
\begin{equation*}
\min _{x} f(x) . \tag{4}
\end{equation*}
$$

- It means $\min _{x} f(x) \leq f(y)$ for any y.

Optimization

- Suppose $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
- The goal is solve

$$
\begin{equation*}
\min _{x} f(x) . \tag{4}
\end{equation*}
$$

- It means $\min _{x} f(x) \leq f(y)$ for any y.
- We want to find x^{*} such that $f\left(x^{*}\right)=\min _{x} f(x)$.
- The point x^{*} is called the optimal solution or the minimizer of f.

Optimization

- Suppose $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
- The goal is solve

$$
\min _{x} f(x) .
$$

- It means $\min _{x} f(x) \leq f(y)$ for any y.
- We want to find x^{*} such that $f\left(x^{*}\right)=\min _{x} f(x)$.
- The point x^{*} is called the optimal solution or the minimizer of f.
- There might not be a minimizer or there might have many, not just one. (In most case, we are content with finding one.)

Convex functions

A function f is convex if

$$
\begin{equation*}
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y) \tag{5}
\end{equation*}
$$

for every x, y, and $0 \leq \alpha \leq 1$.

Properties of convex functions

If f is convex, then

$$
\begin{equation*}
f(x) \geq f(y)+\nabla f(y)^{\top}(x-y) \tag{6}
\end{equation*}
$$

for any x and y.

Properties of convex functions

If f is convex, then

$$
\begin{equation*}
f(x) \geq f(y)+\nabla f(y)^{\top}(x-y) \tag{6}
\end{equation*}
$$

for any x and y.

Proof:

$$
\begin{aligned}
f(\alpha x+(1-\alpha) y) & \leq \alpha f(x)+(1-\alpha) f(y) \\
\alpha f(y)+f(y+\alpha(x-y))-f(y) & \leq \alpha f(x) \\
f(y)+\frac{f(y+\alpha(x-y))-f(y)}{\alpha} & \leq f(x) \\
f(y)+\nabla f(y)^{\top}(x-y) & \leq f(x)
\end{aligned}
$$

Supporting hyperplanes

Supporting hyperplanes

- Is the mean-squared error

$$
\begin{equation*}
L=\|X w-y\|_{2}^{2} \tag{7}
\end{equation*}
$$

convex in w ?

- The definition itself is not always easy to use for checking convexity.

A sufficient condition: Second derivative

- A matrix H is positive semidefinite if $v^{\top} H v \geq 0$ for any v.
- If the Hessian of f exists and is positive semidefinite everywhere, then f is convex.

Convexity of squared distance

- The squared distance $\ell(s)=\left(s-s^{\prime}\right)^{2}$ is convex in s.

Convexity of squared distance

- The squared distance $\ell(s)=\left(s-s^{\prime}\right)^{2}$ is convex in s.

$$
\begin{equation*}
\frac{\partial^{2} \ell}{\partial s^{2}}=2 \geq 0 \tag{8}
\end{equation*}
$$

Convexity of the ℓ_{2} norm

- Show that $f(x)=\|x\|_{2}^{2}$ is convex in x.

Convexity of the ℓ_{2} norm

- Show that $f(x)=\|x\|_{2}^{2}$ is convex in x.

$$
\begin{equation*}
\frac{\partial^{2} \ell}{\partial x_{i} \partial x_{j}}=0 \quad \frac{\partial^{2} \ell}{\partial x_{i}^{2}}=2 \tag{9}
\end{equation*}
$$

Affine transform preserves convexity

- If f is convex, then $g(x)=f(A x+b)$ is also convex.

Affine transform preserves convexity

- If f is convex, then $g(x)=f(A x+b)$ is also convex.

$$
\begin{align*}
g(\alpha x+(1-\alpha) y) & =f(\alpha(A x+b)+(1-\alpha)(A y+b)) \tag{10}\\
& \leq \alpha f(A x+b)+(1-\alpha) f(A y+b)=\alpha g(x)+(1-\alpha) g(y) \tag{11}
\end{align*}
$$

Nonnegative weighted sum of convex functions

- If f_{1}, \ldots, f_{k} are convex, then $f=\beta_{1} f_{1}+\cdots+\beta_{k} f_{k}$ is also convex when $\beta_{1}, \ldots, \beta_{k} \geq 0$

Nonnegative weighted sum of convex functions

- If f_{1}, \ldots, f_{k} are convex, then $f=\beta_{1} f_{1}+\cdots+\beta_{k} f_{k}$ is also convex when $\beta_{1}, \ldots, \beta_{k} \geq 0$

$$
\begin{align*}
f(\alpha x+(1-\alpha) y) & =\beta_{1} f_{1}(\alpha x+(1-\alpha) y)+\cdots+\beta_{k} f_{k}(\alpha x+(1-\alpha) y) \tag{12}\\
& \leq \beta_{1} \alpha f_{1}(x)+\beta_{1}(1-\alpha) f(y)+\cdots+\beta_{k} \alpha f_{k}(x)+\beta_{k}(1-\alpha) f_{k}(y) \tag{13}\\
& =\alpha\left(\beta_{1} f_{1}(x)+\cdots+\beta_{k} f_{k}(x)\right)+(1-\alpha)\left(\beta_{1} f_{1}(y)+\cdots+\beta_{k} f_{k}(y)\right) \tag{14}
\end{align*}
$$

$$
\begin{equation*}
=\alpha f(x)+(1-\alpha) f(y) \tag{15}
\end{equation*}
$$

Convexity of MSE

- The mean-squared error is

$$
\begin{equation*}
L=\sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}=\|X w-y\|_{2}^{2} . \tag{16}
\end{equation*}
$$

- We know that the squared distance is convex.
- Use the affine transform and nonnegative weighted sum to obtain the mean-squared error.

Optimality condition

If f is convex and

$$
\begin{equation*}
\nabla f\left(x^{*}\right)=0 \tag{17}
\end{equation*}
$$

at x^{*}, then x^{*} is the minimizer of f.

Optimality condition

If f is convex and

$$
\begin{equation*}
\nabla f\left(x^{*}\right)=0 \tag{17}
\end{equation*}
$$

at x^{*}, then x^{*} is the minimizer of f.
Proof: Suppose $\nabla f\left(x^{*}\right)=0$. For any x,

$$
\begin{equation*}
f(x) \geq f\left(x^{*}\right)+\left(x-x^{*}\right)^{\top} \nabla f\left(x^{*}\right)=f\left(x^{*}\right) . \tag{18}
\end{equation*}
$$

Optimal solution of MSE

- The mean-squared error is

$$
\begin{equation*}
L=\sum_{i=1}^{n}\left(w^{\top} \phi\left(x_{i}\right)-y_{i}\right)^{2}=\|X w-y\|_{2}^{2} \tag{19}
\end{equation*}
$$

- The solution to $\nabla_{w} L=0$ is $w^{*}=\left(X^{\top} X\right)^{-1} X^{\top} y$.
- Because L is convex in w, w^{*} is a minimizer of L.

Convexity of log loss

- The log loss in the binary case is

$$
\begin{equation*}
L=\sum_{i=1}^{N} \log \left(1+\exp \left(-y_{i} w^{\top} x_{i}\right)\right) \tag{20}
\end{equation*}
$$

- We just need to show $\ell(s)=\log (1+\exp (-s))$ is convex in s.
- Use affine transform and nonnegative weighted sum to obtain the log loss.

$$
\begin{gather*}
\frac{\partial \ell}{\partial s}=\frac{-\exp (-s)}{1+\exp (-s)}=\frac{1}{1+\exp (-s)}-1 \tag{21}\\
\frac{\partial^{2} \ell}{\partial s^{2}}=\frac{1}{1+\exp (-s)} \frac{\exp (-s)}{1+\exp (-s)}=\frac{1}{1+\exp (-s)}\left(1-\frac{1}{1+\exp (-s)}\right) \geq 0 \tag{22}
\end{gather*}
$$

Strictly convex functions

A function f is strictly convex if

$$
\begin{equation*}
f(\alpha x+(1-\alpha) y)<\alpha f(x)+(1-\alpha) f(y), \tag{23}
\end{equation*}
$$

for every $x \neq y$, and $0 \leq \alpha \leq 1$.

Properties of strictly convex functions

- If f is strictly convex, then

$$
\begin{equation*}
f(x)>f(y)+\nabla f(y)^{\top}(x-y) \tag{24}
\end{equation*}
$$

for any $x \neq y$.

Properties of strictly convex functions

- If f is strictly convex, then

$$
\begin{equation*}
f(x)>f(y)+\nabla f(y)^{\top}(x-y) \tag{24}
\end{equation*}
$$

for any $x \neq y$.

- A matrix H is positive definite if $v^{\top} H v>0$ for any $v \neq 0$.
- If the Hessian of f is positive definite, then f is strictly convex.

Uniqueness of minimizers for strictly convex functions

A strictly convex function f has a unique minimizer.

Uniqueness of minimizers for strictly convex functions

A strictly convex function f has a unique minimizer.

Proof: Suppose x^{*} is a minimizer of f, i.e., $\nabla f\left(x^{*}\right)=0$. Since f is strictly convex,

$$
\begin{equation*}
f(x)>f(y)+\nabla f(y)^{\top}(x-y) \tag{25}
\end{equation*}
$$

for any $x \neq y$. In particular, if we let $y=x^{*}$

