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Convexity on more points

If a function f is convex,

f (α1x1 + α2x2 + α3x3) ≤ α1f (x1) + α2f (x2) + α3f (x3) (1)

for α1, α2, α3 ≥ 0 and α1 + α2 + α3 = 1.
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Convexity on more points

If a function f is convex,

f

(
n∑

i=1

αixi

)
≤

n∑
i=1

αi f (xi ) (2)

for αi ≥ 0 and
∑n

i=1 αi = 1.

3 / 23



Jensen’s inequality

If a function f is convex,

f (Ex∼p(x)[x ]) ≤ Ex∼p(x)[f (x)]. (3)
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• For log loss

L =
n∑

i=1

log

(
1 + exp(−yiw

⊤ϕ(xi ))

)
(4)

we cannot even solve ∇wL = 0.

• How do we find the optimal solution?
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Gradient descent

• Gradient descent is an iterative algorithm, consisting of the steps

wt+1 = wt − ηt∇L(wt). (5)

• The variable ηt > 0 is called the step size (or learning rate), and can depend on t.
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Gradient descent on log loss

• The log loss in the binary case

L =
n∑

i=1

log

(
1 + exp(−yiw

⊤xi )

)
. (6)

• We have shown that L is convex in w .
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Gradient descent on log loss

∂L

∂w
=

n∑
i=1

exp(−yiw
⊤xi )

1 + exp(−yiw⊤xi )
(−yixi ) (7)

=
n∑

i=1

(
1− 1

1 + exp(−yiw⊤xi )

)
(−yixi ) (8)

=
n∑

i=1

(1− p(yi |xi )) (−yixi ) (9)
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Gradient descent on log loss

wt+1 = wt − ηt∇L(wt) (10)

wt+1 = wt − ηt

n∑
i=1

(
1− 1

1 + exp(−yiw⊤
t xi )

)
(−yixi ) (11)
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Gradient descent

L

w
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Approximate solutions in optimization

• We say that x̂ is an approximate solution of the minimizer x∗ if, for a given ϵ > 0,

f (x̂)− f (x∗) < ϵ. (12)

• Note that it is close in function value, not close in the input.
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Approximate solutions for iterative algorithms

• An iterative algorithm creates a sequence x1, . . . , xt .

• How many updates do we need to achieve an approximate solution?

• Given ϵ > 0, how large does t needs to be to achieve

f (xt)− f (x∗) < ϵ? (13)

• We want to express ϵ as a function of t.
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Potential results

• Sublinear

– f (xt)− f (x∗) ≤ c

t2

– ϵ = O
(

1
t2

)
or t = O( 1√

ϵ
)

• Linear

– f (xt)− f (x∗) ≤ cr t for 0 < r < 1

– ϵ = O (2−t) or t = O(log 1
ϵ )

• Quadratic

– f (xt)− f (x∗) ≤ cr2
t

for 0 < r < 1

– ϵ = O
(
2−2t

)
or t = O(log log 1

ϵ )
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Convergence rates
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Gradient descent on mean-squared error

• The mean-squared error is

L = ∥Xw − y∥22. (14)

• We have shown that L is convex in w .

• We have shown that the optimal solution is (X⊤X )−1X⊤y .
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Gradient descent on mean-squared error

∇L = 2(X⊤Xw − X⊤y) (15)

wt+1 = wt − ηt∇L(wt) = wt − ηt2(X
⊤Xwt − X⊤y) (16)
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Rumtime comparison for solving mean-squared error

• The runtime of (X⊤X )−1X⊤y is O(nd2) or O(d3) (whichever dominates).

• The runtim of a single gradient step wt+1 = wt − ηt2(X
⊤Xwt − X⊤y) is O(nd).
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Convergence rates of gradient descent
on mean-squared error

• If we run gradient descent on mean-squared error, we have

L(wt)− L(w∗) =
1

2
(w0 − w∗)⊤(I − ηH)2tH(w0 − w∗) (17)

where H = X⊤X is the Hessian of L.

• If we choose η = 1
λmax

, where λmax is the largest eigenvalue of H, the convergence
is linear.
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Stochastic gradient descent

1. Sample xt , yt from a data set S .

2. wt+1 = wt − ηt∇ℓ(wt ; xt , yt)

– Per sample L2 loss ℓ(w ; x , y) = (w⊤xt − yt)
2

– Per sample log loss ℓ(w ; x , y) = log(1 + exp(−ytw
⊤xt))

3. Go to 1 until the solution is satisfactory.
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Stochastic gradient descent

• ∇ℓ(wt ; xt , yt) is now random, because xt and yt is random.

• The expectation

Ex ,y∼U(S)[∇ℓ(w ; x , y)] = ∇L(w) (18)

where U(S) is the uniform distribution over the samples in S .
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Guarantee for stochastic gradient descent

• If we do SGD on an convex function,

Ex ,y∼U(S)[L(w̄t)]− L(w∗) ≤ ∥w0 − w∗∥22
2ηt

+
ηB2

2
. (19)

• ∥∇ℓ(wt ; x , y)∥2 ≤ B for any t, x , and y

• w̄t =
w1+···+wt

t

• The runtime is O(1/
√
t) if we choose η = ∥w0−w∗∥2

B
√
T

, independent of the data set

size n!
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Mini-batch stochastic gradient descent

1. Sample a subset St from a data set S .

2. wt+1 = wt − ηt∇ 1
|St |
∑

x ,y∈St ℓ(wt ; x , y)

– The random sampling maintains ESt∼U(S)t

[
∇ 1

|St |
∑

x,y∈St
ℓ(w ; x , y)

]
= ∇L(w).

3. Go to 1 until the solution is satisfactory.
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Common practice and terminology

• When doing SGD, permute the data and then go in serial.

• A pass over the data set is called an epoch.

• When doing mini-batch SGD, remember to normalize by the batch size.

• With a larger batch size, we go over an epoch faster.

• Use the largest batch size you can afford.
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