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Convexity on more points

If a function f is convex,
f(Oé1X1 + aoxo + Oé3X3) < o1 f(Xl) =+ o f(Xg) + Oé3f(X3) (1)

for vy, an, a3 > 0 and a3 + ar + a3z = 1.
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Convexity on more points

If a function f is convex,

f (Z a,-x,-) < Za;f(x,-) (2)

fora;j >0and >0 ;o = 1.
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Jensen’s inequality

If a function f is convex,

f(]Ex~p(X) [X]) < IExwp(x)[f(x)]' (3)
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® For log loss

L=3log (1 + exp(—y,-qub(x,-))) *)

i=1

we cannot even solve V,, L = 0.

® How do we find the optimal solution?
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Gradient descent

® Gradient descent is an iterative algorithm, consisting of the steps
Wiyl = We — 'I’]tVL(Wt) (5)

® The variable n; > 0 is called the step size (or learning rate), and can depend on t.
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Gradient descent on log loss

® The log loss in the binary case

L= z”: log (1 + exp(—y,-WTX,-)> : (6)

i=1

® \We have shown that L is convex in w.
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Gradient descent on log loss

oL = Zn: exp(_)/iWTX;)

ow 1+exp(_inTXi

- Z ( 1+ exp( 1 inTXI,)> (—yixi)

Z yI|X/ ini)

i=1

)(*YI'XI)
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Gradient descent on log loss

Wt_l,_]_ = W — ntVL(Wt) (10)

Wepl = We — 1)t i <1 : )> (—ixi) (11)

— a 1+ exp(—yiw;' x;
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Gradient descent
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Approximate solutions in optimization

® \We say that X is an approximate solution of the minimizer x* if, for a given ¢ > 0,

F(R) — f(x*) < . (12)

® Note that it is close in function value, not close in the input.
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Approximate solutions for iterative algorithms

An iterative algorithm creates a sequence xi, ..., x;.
How many updates do we need to achieve an approximate solution?

Given € > 0, how large does t needs to be to achieve

f(xe) — f(x*) <e€?

We want to express € as a function of t.
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Potential results

® Sublinear
C
- f(xe) — f(x") < 2
® |inear

- f(x) = f(x*)<ecrffor0O<r<1

® Quadratic
~ fx) —f(x*)<cr? for0<r<1
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Potential results

® Sublinear
- ()~ ) <
- e:O(t%) ort:O(ﬁ)

c
+2

® Linear
- f(x) = f(x*)<ecrffor0<r<1
- e=0(2" ort=0(log?)

® Quadratic

- f(x) = f(x*)<cr? for0<r<1
-e=0 (2*2t) or t = O(loglog 1)
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Convergence rates
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Gradient descent on mean-squared error

® The mean-squared error is

L=|Xw—yl3. (14)
® \We have shown that L is convex in w.

® We have shown that the optimal solution is (X' X)™1XTy.
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Gradient descent on mean-squared error

VL =2(X"Xw - X"y) (15)

Wer1 = we — e VL(we) = we — 0:2(X T Xwe — X Ty) (16)
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Rumtime comparison for solving mean-squared error

® The runtime of (X' X)X Ty is O(nd?) or O(d®) (whichever dominates).
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Rumtime comparison for solving mean-squared error

® The runtime of (X' X)X Ty is O(nd?) or O(d®) (whichever dominates).

® The runtim of a single gradient step w;.1 = wy — 7:2(X ' Xwz — X Ty) is O(nd).
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Convergence rates of gradient descent
on mean-squared error

® |f we run gradient descent on mean-squared error, we have
1
L(we) — L(w") = 5(no — w*) (1 = nH)* H(wo — w*) (17)

where H = X T X is the Hessian of L.

® |f we choose ) = ﬁ where Amayx is the largest eigenvalue of H, the convergence

is linear.
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Stochastic gradient descent

1. Sample x;, y; from a data set S.

2. w1 = we — eV We xe, i)
— Per sample L; loss {(w; x,y) = (W' x; — y;)?

— Per sample log loss /(w; x,y) = log(1 + exp(—y:w " x;))

3. Go to 1 until the solution is satisfactory.
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Stochastic gradient descent

® V/(wy; xt, yt) is now random, because x; and y; is random.

® The expectation
EX,yNU(S)[vg(W;Xuy)] = VL(W) (18)

where U(S) is the uniform distribution over the samples in S.
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Guarantee for stochastic gradient descent

If we do SGD on an convex function,

Exy~us)L(We)] = L(w")

IV e(we; x,y)||2 < B for any t, x, and y

oo Witetw
Wy = t L

The runtime is O(1/+/t) if we choose 1 =
size n!

<

lwo —w*|3 | nB?

+ 1= (19)

2nt

[[wo—w*]>

CEVT

2

independent of the data set

21/23



Mini-batch stochastic gradient descent

1. Sample a subset S; from a data set S.
2. Wep1 = we — ﬁtvﬁ > oxyes Uwe x,y)
— The random sampling maintains Eg, .y (s): [Vﬁ 2 oxyes. €(w;x,y)} =VL(w).

3. Go to 1 until the solution is satisfactory.
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Common practice and terminology
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Common practice and terminology

® When doing SGD, permute the data and then go in serial.
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Common practice and terminology
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Common practice and terminology

® When doing SGD, permute the data and then go in serial.
® A pass over the data set is called an epoch.

® When doing mini-batch SGD, remember to normalize by the batch size.
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Common practice and terminology

When doing SGD, permute the data and then go in serial.

A pass over the data set is called an epoch.

When doing mini-batch SGD, remember to normalize by the batch size.
With a larger batch size, we go over an epoch faster.

Use the largest batch size you can afford.
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