# Machine Learning: Optimization 3 

Hao Tang

February 14, 2024

## Subgradients for absolute values



## Subgradient

- A subgradient at $x$ is a vector $g$ that satisfies

$$
\begin{equation*}
f(y) \geq f(x)+g^{\top}(y-x) \tag{1}
\end{equation*}
$$

for any y , and the set of subgradients at $x$ is denoted as $\partial f(x)$.

- Obviously, $\nabla f(x) \in \partial f(x)$, if $\nabla f(x)$ exists.
- Convergence theorems can be ported to subgradient descent.


## Hinge loss

- The hinge loss is defined as

$$
\begin{equation*}
\ell_{\text {hinge }}(w ; x, y)=\max \left(0,1-y w^{\top} x\right) \tag{2}
\end{equation*}
$$

- Just like the absolute value, the hinge loss is continuous and convex, but it is not differentiable.

$$
\nabla_{w} \ell= \begin{cases}0 & \text { if } y w^{\top} x \geq 1  \tag{3}\\ -y x & \text { if } y w^{\top} x<1\end{cases}
$$

- When $y w^{\top} x=1$, we can pick and choose any vector that supports the loss function from below as the subgradient. In fact, 0 and $-y x$ both work.


## Constrained optimization



## Constrained optimization



## Constrained optimization



## Setting up a barrier



## An example problem with constraints

- The problem

$$
\begin{array}{cl}
\min _{x} & x^{2} \\
\text { s.t. } & -2.5 \leq x \leq-0.5 \tag{4}
\end{array}
$$

is an example of a contrained optimization problem.

- The inequality $-2.5 \leq x \leq-0.5$ is called a constraint.
- Solutions that satisfy the constraints are called feasible solutions.


## Setting up a barrier

- The problem

$$
\begin{array}{cl}
\min _{x} & x^{2} \\
\text { s.t. } & -2.5 \leq x \leq-0.5 \tag{5}
\end{array}
$$

is equivalent to

$$
\begin{equation*}
\min _{x} x^{2}+V_{-}(x) \tag{6}
\end{equation*}
$$

if

$$
V_{-}(x)= \begin{cases}0 & \text { if }-2.5 \leq x \leq-0.5  \tag{7}\\ \infty & \text { otherwise }\end{cases}
$$

## An example problem with constraints

- The problem

$$
\begin{array}{ll}
\min _{w} & L(w) \\
\text { s.t. } & \|w\|_{2}^{2} \leq 1 \tag{8}
\end{array}
$$

is an example of a contrained optimization problem.

- The inequality $\|w\|_{2}^{2} \leq 1$ is called a constraint.
- Solutions that satisfy the constraints are called feasible solutions.


## Setting up a barrier

- We can write the optimization problem as

$$
\begin{equation*}
\min _{w} \quad L(w)+V_{-}\left(\|w\|_{2}^{2}-1\right), \tag{9}
\end{equation*}
$$

where

$$
V_{-}(s)=\left\{\begin{array}{ll}
0 & \text { if } s \leq 0  \tag{10}\\
\infty & \text { if } s>0
\end{array} .\right.
$$

- This does not change anything; both problems are equally hard (or easy) to solve.


## Soften the constraints

- We can approximate

$$
\begin{equation*}
\min _{w} \quad L(w)+V_{-}\left(\|w\|_{2}^{2}-1\right) \tag{11}
\end{equation*}
$$

with

$$
\begin{equation*}
\min _{w} \quad L(w)+\lambda\left(\|w\|_{2}^{2}-1\right), \tag{12}
\end{equation*}
$$

for some $\lambda \geq 0$.

- Note that $\lambda s \leq V_{-}(s)$ for all $s$.


## Soften the constraints



## Lagrangian

- In general, if you have a optimization problem

$$
\begin{array}{ll}
\min _{x} & f(x) \\
\text { s.t. } & h(x) \leq 0 \tag{13}
\end{array}
$$

the Lagrangian is defined as

$$
\begin{equation*}
f(x)+\lambda h(x) \tag{14}
\end{equation*}
$$

for $\lambda \geq 0$.

- The value $\lambda$ is called the Lagrange multiplier.


## Solving the Lagrangian

- Solve $g(\lambda)=\min _{x}[f(x)+\lambda h(x)]$ for a particular $\lambda$.
- Find $\hat{\lambda}$ such that $\min _{x}[f(x)+\hat{\lambda} h(x)]$ gives a feasible solution.
- Suppose $\hat{x}=\operatorname{argmin}_{x}[f(x)+\hat{\lambda} h(x)]$ and $x^{*}=\operatorname{argmin}_{x: h(x) \leq 0} f(x)$.

$$
\begin{equation*}
f(\hat{x})+\hat{\lambda} h(\hat{x}) \leq f\left(x^{*}\right)+\hat{\lambda} f\left(x^{*}\right) \leq f\left(x^{*}\right) \tag{15}
\end{equation*}
$$

## Solving the Lagrangian

- We want $f(\hat{x})=f(\hat{x})+\hat{\lambda} h(\hat{x})$ leading to $f(\hat{x}) \leq f\left(x^{*}\right)$, so that we can conclude $f(\hat{x})=f\left(x^{*}\right)$.
- If we want $\hat{\lambda} h(\hat{x})=0$, then either $\hat{\lambda}=0$ or $h(\hat{x})=0$.
- When $\hat{\lambda}=0$, the minimizer of $f$ is a feasible solution already.
- When $h(\hat{x})=0$, the minimizer of $f$ is not a feasible solution, and we are on the edge of a constraint.


## A unigram model

Row, row, row your boat, gently down the stream Merrily, merrily, merrily, merrily, life is but a dream

## A unigram model

Row, row, row your boat, gently down the stream Merrily, merrily, merrily, merrily, life is but a dream

- There are 18 words.
- Intuitively,

$$
\begin{equation*}
p(\text { row })=\frac{3}{18} \quad p(\text { merrily })=\frac{4}{18} \quad p(\text { is })=\frac{1}{18} \tag{16}
\end{equation*}
$$

## A unigram model

- There are 13 unique words.
- We refer to the set of unique words $V=\{$ row, your, boat, gently, down, the, stream, merrily, life, is, but, a, dream $\}$ as the vocabulary.
- We assign each word $v$ a probability $\beta_{v}$.
- The probability of a word is

$$
\begin{equation*}
p(w)=\prod_{v \in V} \beta_{v}^{\mathbb{1}_{v=w}} \tag{17}
\end{equation*}
$$

## A unigram model

- We assume that each word is independent of others.
- This assumption is obviously wrong, but can go really far.
- The likelihood of $\beta$ given the data is

$$
\begin{equation*}
\log p\left(w_{1}, \ldots, w_{N}\right)=\log \prod_{i=1}^{N} p\left(w_{i}\right)=\log \prod_{i=1}^{N} \prod_{v \in V} \beta_{v}^{\mathbb{1}_{v=w_{i}}} \tag{18}
\end{equation*}
$$

- Since $\beta$ is a probability vector, we have the assumption

$$
\begin{equation*}
\sum_{v \in V} \beta_{v}=1 \tag{19}
\end{equation*}
$$

## A unigram model

- We arrive at the optimization problem

$$
\begin{array}{ll}
\min _{\beta} & -\sum_{i=1}^{N} \sum_{v \in V} \mathbb{1}_{v=w_{i}} \log \beta_{v} \\
\text { s.t. } & \sum_{v \in V} \beta_{v}=1 \tag{20}
\end{array}
$$

- Its Lagrangian is

$$
\begin{equation*}
F=-\sum_{i=1}^{N} \sum_{v \in V} \mathbb{1}_{v=w_{i}} \log \beta_{v}+\lambda\left(\sum_{v \in V} \beta_{v}-1\right) . \tag{21}
\end{equation*}
$$

## A unigram model

- Solving the optimality condition gives

$$
\begin{equation*}
\frac{\partial F}{\partial \beta_{k}}=\sum_{i=1}^{N} \mathbb{1}_{k=w_{i}} \frac{1}{\beta_{k}}-\lambda=0 \Longrightarrow \beta_{k}=\frac{1}{\lambda} \sum_{i=1}^{N} \mathbb{1}_{k=w_{i}} \tag{22}
\end{equation*}
$$

## A unigram model

$$
\begin{gather*}
\sum_{v \in V} \beta_{v}=\sum_{v \in V} \frac{1}{\lambda} \sum_{i=1}^{N} \mathbb{1}_{v=w_{i}}=1 \Longrightarrow \lambda=\sum_{v \in V} \sum_{i=1}^{N} \mathbb{1}_{v=w_{i}}=N  \tag{23}\\
\beta_{k}=\frac{\sum_{i=1}^{N} \mathbb{1}_{k=w_{i}}}{\sum_{v \in V} \sum_{i=1}^{N} \mathbb{1}_{v=w_{i}}}=\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{k=w_{i}} \tag{24}
\end{gather*}
$$

## Projection



$$
\begin{equation*}
\|u\|_{2}|\cos \theta|=\|u\|_{2} \frac{\left|u^{\top} v\right|}{\|u\|_{2}\|v\|_{2}}=\frac{\left|u^{\top} v\right|}{\|v\|_{2}} \tag{25}
\end{equation*}
$$

## Projection

- The projection of $x$ onto $w$ is $\frac{\left|x^{\top} w\right|}{\|w\|_{2}}$.
- If we have $N$ data points $\left\{x_{1}, \ldots, x_{N}\right\}$, then the sum of the (squared) projection is

$$
\begin{equation*}
\sum_{i=1}^{N}\left(\frac{\left|x_{i}^{\top} w\right|}{\|w\|_{2}}\right)^{2}=\frac{w^{\top} X^{\top} X w}{w^{\top} w} \tag{26}
\end{equation*}
$$

- The sum of squared projection can be seen as the spread of the data.


## Maximal projection



## Maximal projection

- We want to find the maximum direction to project.
- The optimization problem is

$$
\begin{equation*}
\max _{w} \frac{w^{\top} X^{\top} X w}{w^{\top} w} . \tag{27}
\end{equation*}
$$

## Maximal projection

- The problem is scale invariant.

$$
\begin{equation*}
\frac{(a w)^{\top} X^{\top} X(a w)}{(a w)^{\top}(a w)}=\frac{w^{\top} X^{\top} X w}{w^{\top} w} . \tag{28}
\end{equation*}
$$

- The problem is equivalent to

$$
\begin{equation*}
\max _{w} w^{\top} X^{\top} X w \quad \text { s.t. }\|w\|_{2}^{2}=1 \tag{29}
\end{equation*}
$$

## Maximal projection

- The Lagrangian is

$$
\begin{equation*}
F=w^{\top} X^{\top} X w+\lambda\left(1-\|w\|_{2}^{2}\right) . \tag{30}
\end{equation*}
$$

- Finding the optimal solution gives

$$
\begin{equation*}
\frac{\partial F}{\partial w}=\left(X^{\top} X+X^{\top} X\right) w-2 \lambda w=0 \Longrightarrow X^{\top} X w=\lambda w \tag{31}
\end{equation*}
$$

- It turns out that $\lambda$ is an eigenvalue, and $w$ an eigenvector.


## Maximal projection

- Plugging the solution back to the objective,

$$
\begin{equation*}
\frac{w^{\top} X^{\top} X w}{w^{\top} w}=\frac{\lambda w^{\top} w}{w^{\top} w}=\lambda \tag{32}
\end{equation*}
$$

- Since the goal is to find the maximal projection, this is now equivalent to finding the largest eigenvalue of $X^{\top} X$.


## Maximal projection

- The term

$$
\begin{equation*}
\frac{w^{\top} X^{\top} X w}{w^{\top} w} \tag{33}
\end{equation*}
$$

is called the Rayleigh quotient.

- The optimal $w$ is called the first principal component.
- We will learn more about this when we talk about principal component analysis.

