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Subgradient

® A subgradient at x is a vector g that satisfies

fly) > f(x)+g'(y —x)

for any y, and the set of subgradients at x is denoted as 9f(x).

® Obviously, Vf(x) € 0f(x), if Vf(x) exists.

e Convergence theorems can be ported to subgradient descent.
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Hinge loss

® The hinge loss is defined as
Ehinge(W; X7Y) = max(O, 1- yWTX)' (2)

® Just like the absolute value, the hinge loss is continuous and convex, but it is not
differentiable.

0 if yw x> 1
Vil = SR (3)
—yx ifyw' x<1

® When yw"x = 1, we can pick and choose any vector that supports the loss
function from below as the subgradient. In fact, 0 and —yx both work.
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Setting up a barrier
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An example problem with constraints

® The problem

min x2
X

st. —25<x<-05 (4)

is an example of a contrained optimization problem.
® The inequality —2.5 < x < —0.5 is called a constraint.

® Solutions that satisfy the constraints are called feasible solutions.
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Setting up a barrier

® The problem

2

min X
s.t. —25<x<-05 (5)
is equivalent to
min x? 4+ V_(x) (6)
if
0 if-25<x<-05
V_o(x) = { . (7)
oo otherwise
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An example problem with constraints

® The problem

min L(w)
st fwlz<1 (8)

is an example of a contrained optimization problem.
® The inequality [|w||3 < 1 is called a constraint.

® Solutions that satisfy the constraints are called feasible solutions.
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Setting up a barrier

® \We can write the optimization problem as

min - L(w) + V_([lw]3 - 1), 9)
where
o= {212

® This does not change anything; both problems are equally hard (or easy) to solve.

10/29



Soften the constraints

® \We can approximate
min  L(w)+ V(w3 - 1) (11)
with
min  L(w) +A(|wl]l3 - 1), (12)

for some A > 0.

® Note that A\s < V_(s) for all s.
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Lagrangian

® In general, if you have a optimization problem

mXin f(x)
s.t. h(x) <0 (13)
the Lagrangian is defined as
f(x) + Ah(x) (14)

for A > 0.
® The value X is called the Lagrange multiplier.
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Solving the Lagrangian

® Solve g(A\) = miny[f(x) + Ah(x)] for a particular A.
® Find X such that min,[f(x) + Ah(x)] gives a feasible solution.

® Suppose X = argmin,[f(x) + S\h(x)] and x* = argmin,.(,)<o f(x).

f(X) + Ah(X) < f(x*) + AMf(x*) < f(x¥) (15)
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Solving the Lagrangian

We want f(8) = (%) + Ah(X) leading to f(&) < f(x*), so that we can conclude

f(X) = f(x*).
If we want \h(X) = 0, then either A = 0 or h(X) = 0.
When A = 0, the minimizer of f is a feasible solution already.

When h(X) = 0, the minimizer of f is not a feasible solution, and we are on the
edge of a constraint.
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A unigram model

Row, row, row your boat, gently down the stream
Merrily, merrily, merrily, merrily, life is but a dream
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A unigram model
Row, row, row your boat, gently down the stream
Merrily, merrily, merrily, merrily, life is but a dream

® There are 18 words.

® Intuitively,

p(row) = — p(merrily) = s plis) = —

(16)
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A unigram model

There are 13 unique words.

We refer to the set of unique words V = {row, your, boat, gently, down, the,
stream, merrily, life, is, but, a, dream} as the vocabulary.

We assign each word v a probability 3, .

The probability of a word is

p(w) =[] By

veV

(17)
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A unigram model
We assume that each word is independent of others.
This assumption is obviously wrong, but can go really far.

The likelihood of 3 given the data is

N N

log p(wa,...,wy) = Iong(W;) = IogH H B

i=1 i=1lveVv

Since [ is a probability vector, we have the assumption

Zﬂvzl-

veV

(18)

(19)
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A unigram model

® \We arrive at the optimization problem

N
mﬁin — Z Z 1y—w, log By

i=1veV

s.t. > B=1 (20)

veV

® |ts Lagrangian is

N
F:_Zzlv—wilogﬁv+>\<26V_l>' (21)

i=1veV veV
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A unigram model

® Solving the optimality condition gives

Liw,- (22)

IFE;’j =

1
]]_ w: 5 :0 =
35k ,E— k=w; = bk
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A unigram model

N N
D B DM R D D) s MIVE 8

veV veV i=1 veV i=1

N

ZI'V—l Ly=w; 1 Z

/Sk = = N : - :H'k:Wl (24)
ZVEV ZI':]. :H'VzWi N =1
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Projection

> V
\uTv] ]uTv\
|ull2] cos O] = [[ul|2 = (25)
[ull2llvilz vl
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Projection

. - xTw
® The projection of x onto w is Tk -
e If we have N data points {x1,...,xy}, then the sum of the (squared) projection is
i <|X,-TW|>2 ow T X T Xw (26)
[wll2 wiw

i=1

® The sum of squared projection can be seen as the spread of the data.
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Maximal projection

® \We want to find the maximum direction to project.

® The optimization problem is

w T X T Xw
max ———.

w WTW

(27)
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Maximal projection

® The problem is scale invariant.

w) T XT X (aw w! X T Xw
= (3W)T(av(v‘; ): wiw (28)

® The problem is equivalent to

maxw ' X Xw st w3 =1. (29)

w
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Maximal projection

® The Lagrangian is

F=w"X"Xw+ A1~ |wl|3).

® Finding the optimal solution gives

oF

— =X X+ X" X)w 22w =0 = X' Xw = w.

ow

® |t turns out that A is an eigenvalue, and w an eigenvector.

(31)
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Maximal projection

® Plugging the solution back to the objective,

TyT T
WXXW:)\WW:)\ (32)
w'w wlw

® Since the goal is to find the maximal projection, this is now equivalent to finding
the largest eigenvalue of X ' X.
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Maximal projection

® The term

w !XT Xw

w!w

(33)
is called the Rayleigh quotient.
® The optimal w is called the first principal component.

® We will learn more about this when we talk about principal component analysis.
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