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Geometry of linear regression

y = wx + b

N∑
i=1

(wxi + b − yi )
2
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Geometry of linear regression (cont.)

y = w⊤x + b

N∑
i=1

(w⊤xi + b − yi )
2
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Linear regression

• S = {(x1, y1), . . . , (xN , yN)}: data set

– xi =
[
xi1 · · · xid

]⊤
: input, features, independent variables

– yi ∈ R: target/dependent variable, ground truth, for xi .

• f (x) = w⊤x + b: linear predictor, hyperplane

– w =
[
w1 · · · wd

]⊤
: weights

– b ∈ R: bias

– {w , b}: parameters · · · θ = [b w⊤]⊤
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Linear regression

• Given S = {(x1, y1), . . . , (xN , yN)}, find θ such that the mean-squared error
(MSE)

L =
1

N

N∑
i=1

(w⊤xi + b − yi )
2 (1)

is minimised.

• The act of finding w is called training.

• c.f. “least squares” – a parameter estimation method based on MSE or minimising the sum of

squares of errors/residuals.
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Linear regression: training with MSE

• The goal of linear regression is to solve

min
w ,b

1

N

N∑
i=1

(w⊤xi + b − yi )
2. (2)

• The optimal solution satisfies

∂L

∂b
= 0 ,

∂L

∂w
=
[

∂L
∂w1

∂L
∂w2

· · · ∂L
∂wd

]
= 0. (3)

(Is this global optimal? More on this in lectures on optimisation.)
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Linear regression: finding the bias b

∂

∂b

1

N

N∑
i=1

(w⊤xi + b − yi )
2 =

2

N

N∑
i=1

(w⊤xi + b − yi ) (4)

= 2b − 2

N

N∑
i=1

(yi − w⊤xi ) = 0 (5)

b =
1

N

N∑
i=1

(yi − w⊤xi ) =
1

N

N∑
i=1

yi − w⊤

(
1

N

N∑
i=1

xi

)
= ȳ − w⊤x̄ (6)
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Linear regression: data centring (mean normalisation)

∂L

∂b
= 0 =⇒ b = ȳ − w⊤x̄ (7)

L =
1

N

N∑
i=1

(w⊤xi + b − yi )
2 =

1

N

N∑
i=1

[w⊤(xi − x̄)− (yi − ȳ)]2 (8)

=
1

N

N∑
i=1

(w⊤ẋi − ẏi )
2 (9)

where ẋi = xi − x̄ , ẏi = yi − ȳ
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Linear regression: finding the weights w

∂

∂w
1

N

N∑
i=1

(w⊤ẋi − ẏi )
2 =

2

N

N∑
i=1

(w⊤ẋi − ẏi )(ẋi ) (10)

=
2

N

N∑
i=1

((w⊤ẋi )ẋi − ẏi ẋi ) (11)
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Linear regression: finding the weights w (cont.)

∂

∂w
1

N

N∑
i=1

(w⊤ẋi − ẏi )
2 =

2

N

N∑
i=1

((w⊤ẋi )ẋi − ẏi ẋi ) (12)

=
2

N

[ẋ1 ẋ2 · · · ẋN
]


w⊤ẋ1
w⊤ẋ2

...
w⊤ẋN

−
[
ẋ1 ẋ2 · · · ẋN

]

ẏ1
ẏ2
...
ẏN


 (13)

=
2

N

(
XX⊤w − Xẏ

)
= 0 (14)

−→ w =
(
XX⊤

)−1
Xẏ (15)

NB: the definition of X (which is a d×N matrix) here is different from the one in the textbook LWLS.
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Linear regression - training process

1. Centring

ẏ =

y1 − ȳ
...

yN − ȳ

 , X =
[
x1 − x̄ · · · xN − x̄

]
(16)

2. Computing the weights w and b

w = (XX⊤)−1Xẏ (17)

b = ȳ − w⊤x̄ (18)

NB: (XX⊤)−1X is called a Moore-Penrose pseudoinverse of X.
In practice, we find the solution w without calculating (XX⊤)−1
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What is XX⊤?

• X =
[
x1−x̄ , . . . , xN−x̄

]
• XX⊤ is a d×d symmetric matrix

• XX⊤ is positive semi-definite, i.e. x⊤(XX⊤)x ≥ 0 for any x ∈ Rd

NB: Eigen values of a positive semi-definite matrix are non-negative, i.e. λi ≥ 0 for i = 1, . . . , d

• C = 1
NXX

⊤ is called a covariance matrix
– C = (σij): σii is the (population) variance of i-th dimension of data, σij is the

covariance between i-th and j-th dimensions of data.
– used in many areas, e.g. multivariate normal distributions, principal component

analysis (PCA)

• det (C ) =
d∏

i=1

λi and tr(C ) =
∑d

i=1 λi , where λi is the i-the eigen value of C

• det (C ) = 0 and rk(C ) < d if N ≤ d
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Features

y = w⊤x + b =
[
w⊤ b

] [x
1

]
=

[
w
b

]⊤ [x
1

]
= w ′⊤x ′ (19)

• Fitting f (x) = w⊤x + b is equivalent to appending 1 to x and fitting
f (x ′) = w ′⊤x ′.

• The 1 can be seen as a feature independent of the input.
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Features

• Suppose we have a data point x =
[
x1 x2 x3

]⊤
.

• The data point after appending 1 becomes[
1 x1 x2 x3

]⊤
(20)

• The data point after appending 1 and quadratic terms becomes

ϕ(x) =
[
1 x1 x2 x3 x1x2 x2x3 x1x3 x21 x22 x23

]⊤
(21)

• The function f (x) = w⊤ϕ(x) is a polynomial.
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Linear regression with feature transformation

• We call ϕ a feature function.

• In general, ϕ can be any function.

• Instead of f (x) = w⊤x + b, we now have f (x) = w⊤ϕ(x).

• Instead of X =
[
x1 x2 · · · xN

]
, we have Φ =

[
ϕ(x1) ϕ(x2) · · · ϕ(xN)

]
• The optimal solution for linear regression becomes w = (ΦΦ⊤)−1Φy .
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Examples
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Linear regression

• A “linear” regression model is linear in the parameters w (i.e. linear combination
between the parameters and features), not the features.

• A linear regression model can fit an arbitrary nonlinear function.

• What are the “right” features?

• What does it mean for the program w⊤ϕ(x) we write with data to be “correct”?
(Is it right to use a complex nonlinear transformation ϕ(x)?)
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A probabilistic interpretation

• Assume we cannot get a perfect fit because of noise.

• In particular, we assume the noise is additive and Gaussian.

• In other words, yi = w⊤ϕ(xi ) + ϵi , where ϵi ∼ N (0, 1).

• If ϵi ∼ N (0, 1), then yi ∼ N (w⊤ϕ(xi ), 1).

• The log-likelihood of w is

log
N∏
i=1

1√
2π

exp

(
−1

2
(yi − w⊤ϕ(xi ))2

)
(22)
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A probabilistic interpretation

• Log-likelihood of w

N∑
i=1

[
−1

2
log(2π)− 1

2
(yi − w⊤ϕ(xi ))2

]
(23)

• Mean-squared error

1

N

N∑
i=1

(yi − w⊤ϕ(xi ))2 (24)

• The maximum likelihood estimator is the optimal solution for MSE.
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Practical issues

• The complexity of computing (ΦΦ⊤)Φy is O(N3), where N is the number of
samples.

• The runtime is not particularly suitable for large data sets.

• Instead of solving minw L exactly, could we find an approximate solution?

• In exchange, could we have an algorithm that scales better than O(N3)?

• Not all problems have closed-form solutions for ∂L
∂w anyways.

• What if there are outliers?
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Linear regression

• We write a program f (x) = w⊤ϕ(x) with w = (ΦΦ⊤)−1Φy .

• In what sense is this program “correct”?
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Linear regression using matrix calculus

• The mean-squared error can be written compactly as

L = ∥Φ⊤w − y∥22. (25)

• We can expand the mean-squared error as

L = ∥Φ⊤w − y∥22 = (Φ⊤w − y)⊤(Φ⊤w − y) = w⊤ΦΦ⊤w − 2y⊤Φ⊤w + y⊤y .
(26)

• Solving the optimal solution gives

∂L

∂w

⊤
= (ΦΦ⊤ + (ΦΦ⊤)⊤)w − 2Φy = 0 =⇒ w = (ΦΦ⊤)−1Φy . (27)
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Topics not covered

• Choices of features x (feature selection)

• Interpretations of the model parameters θ

• Collinearity

• Heteroscedasticity

• Other linear regression models (e.g. ridge regression, LASSO, Bayesian linear
regression)

• Multiple linear regression

• Relationships with neural networks

• Relationships with principal component analysis (PCA)
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Quizzes

1. What is the number of dimensions of the hyperplane formed by linear regression?

2. Give detailed derivations for Eqs. (13) and (14).

3. Show that XX⊤ is positive semi-definite.

4. Using x ′ = (1, x⊤)⊤ instead of x , rewrite Eqs. (1), . . . , (15).
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