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Geometry of linear regression

y=wx+b
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Geometry of linear regression (cont.)

y=w'x+b
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Linear regression

o S={(x1,%),..-,(xn,yn)}: data set

T . . .
- xi=[x1 -+ xa| : input, features, independent variables

— y; € R: target/dependent variable, ground truth, for x;.

® f(x) = w'x + b: linear predictor, hyperplane

- w= [Wl Wd}T: weights
— b e R: bias
- {w, b}: parameters --- @ =[bw']T
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Linear regression

® Given S = {(x1,)1),---,(xn,yn)}, find 8 such that the mean-squared error
(MSE)

N
Zw X;+b— y,) (1)

is minimised.
® The act of finding w is called training.

® c.f. “least squares’ — a parameter estimation method based on MSE or minimising the sum of

squares of errors/residuals.
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Linear regression: training with MSE

® The goal of linear regression is to solve

N
: 1 T 2
min iE_l(w xi + b —y)“. (2)

)

® The optimal solution satisfies

owr  Owp Owy

oL O o o ol
o5 =0, 87_[ — 0. (3)

(Is this global optimal? More on this in lectures on optimisation.)
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Linear regression: finding the bias b

01 T 2 2 T
BN :l(w xi+b—y) —N;(w xi+b—y)
s N
T _
_2b—N;(y,—w xi)=0
1
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Linear regression: data centring (mean normalisation)

%—o: b=y—-w'x (7)

[ — L T b 21 ! T _ o2 8

_N,E_;(W xi +b—yi) N;[W (xi = %) = (vi = ¥)] (8)
1 T - \2

= 5w ) ©)

where x; = x; — X, yi=yi—y
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Linear regression: finding the weights w
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Linear regression: finding the weights w (cont)

01 P
TNZ: w'x; —y)? = NZ;((WTX,) P — YiXi) (12)
: M;IX1 41
% ( e xy] w :x2 — [ % - X y:z (13)
w sy n
% (XX"w —Xj) =0 (14)
s w= (xxT) T xy (15)

NB: the definition of X (which is a d x N matrix) here is different from the one in the textbook LWLS.
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Linear regression - training process

1. Centring

yi—y
I S T (16)
YN =Y
2. Computing the weights w and b

= (XX)" Xy (17)

w
b=y—w'x (18)

NB: (XX T)~!X is called a Moore-Penrose pseudoinverse of X.
In practice, we find the solution w without calculating (XX )~}
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What is XX'?

X= [Xl—)_(, ce ,XN—)_(]
XX is a dxd symmetric matrix
XX is positive semi-definite, i.e. x (XXT)x > 0 for any x € RY
NB: Eigen values of a positive semi-definite matrix are non-negative, i.e. A\; > 0fori=1,...,
C= %XXT is called a covariance matrix
— C = (ojj): o is the (population) variance of i-th dimension of data, ¢j; is the
covariance between i-th and j-th dimensions of data.

— used in many areas, e.g. multivariate normal distributions, principal component
analysis (PCA)

d
det (C) = H)\,- and tr(C) = 3%, \;, where )\; is the i-the eigen value of C
i=1

det(C) =0 and rk(C) < dif N <d
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Features

y=wxrn=lwt o [{] <[4 [ =wrx (19)

e Fitting f(x) = w' x + b is equivalent to appending 1 to x and fitting
f(x')=w'Tx"

® The 1 can be seen as a feature independent of the input.
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Features

: T
Suppose we have a data point x = [xl X0 X3]

The data point after appending 1 becomes
[1 X]1 X X3]T

The data point after appending 1 and quadratic terms becomes

¢(X):[1 X1 X2 X3 X1X2 XoX3 X1X3 X12 x22

The function f(x) = w' ¢(x) is a polynomial.

]T
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Linear regression with feature transformation

We call ¢ a feature function.

In general, ¢ can be any function.

Instead of f(x) = w'x + b, we now have f(x) = w'¢(x).
Instead of X = [x1 X2 -+ xpn], we have ® = [¢(x1) &(x2)

The optimal solution for linear regression becomes w = (¢ 7)1y,

P(xn)]
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Linear regression

A “linear” regression model is linear in the parameters w (i.e. linear combination
between the parameters and features), not the features.

A linear regression model can fit an arbitrary nonlinear function.
What are the “right” features?

What does it mean for the program w ' ¢(x) we write with data to be “correct”?
(Is it right to use a complex nonlinear transformation ¢(x)?)
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A probabilistic interpretation

Assume we cannot get a perfect fit because of noise.

In particular, we assume the noise is additive and Gaussian.
In other words, y; = w ' ¢(x;) + €;, where ¢; ~ N(0,1).

If €; ~ N(0,1), then y; ~ N(w " (x;),1).

The log-likelihood of w is

A 1 T (v )\2
IOgil;[l\/EeXp <—2(y:_W ¢(X,))>

(22)
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A probabilistic interpretation

® | og-likelihood of w

5| toxt2n) - 5~ w o)) (23)

® Mean-squared error
L
50— wTo(x)? (24)
i=1

® The maximum likelihood estimator is the optimal solution for MSE.
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Practical issues

The complexity of computing (®® ")y is O(N3), where N is the number of
samples.

The runtime is not particularly suitable for large data sets.
Instead of solving min,, L exactly, could we find an approximate solution?
In exchange, could we have an algorithm that scales better than O(N3)?

Not all problems have closed-form solutions for gﬁ anyways.

What if there are outliers?
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Linear regression

® We write a program f(x) = w ' ¢(x) with w = (¢d ) 1dy.

® |n what sense is this program “correct”?
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Linear regression using matrix calculus

® The mean-squared error can be written compactly as
T 2
L= w—y|3. (25)
® \We can expand the mean-squared error as

L=[0Tw—yB=(®"w—y) (& w-y)=w 06w -2 o wiyly
(26)

® Solving the optimal solution gives

oL’

= = (@7 + (00w — 20y =0 = w = (¢ T) Loy. (27)
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Topics not covered

Choices of features x (feature selection)
Interpretations of the model parameters 6
Collinearity

Heteroscedasticity

Other linear regression models (e.g. ridge regression, LASSO, Bayesian linear
regression)

Multiple linear regression
Relationships with neural networks

Relationships with principal component analysis (PCA)
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Quizzes

. What is the number of dimensions of the hyperplane formed by linear regression?
. Give detailed derivations for Egs. (13) and (14).
. Show that XX is positive semi-definite.

. Using x' = (1,x") T instead of x, rewrite Eqgs. (1), ..., (15).

26/26



