
INFR10086 Machine Learning (MLG) Semester 2, 2023/4

Tutorial 3: PyTorch

import torch

from torch import nn

ce = nn.CrossEntropyLoss(reduction='sum')

x_i = torch.tensor([1.0, 2.0, 3.0])

w = torch.tensor([[4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], requires_grad=True)

y_i = torch.tensor(1)

loss = ce(w @ x_i, y_i)

print(loss)

For the code above, w would predict 1 given x_i, regardless of what y_i is. The variable y_i is
the label we assign to x_i. If the prediction of w agrees with y_i (when they both are 1), then the
loss should be low, so it’s no surprise that the loss is close to 0.

Because the dot product for class 0 is 32 and the dot product for class 1 is 50, the gap is so
large that exp(32 − 50) is a tiny number. As a consequence, 1/(1 + exp(32 − 50)) is very close to
1, and − log(1) is 0.

import torch

from torch import nn

w = nn.Linear(3, 2)

print(list(w.parameters()))

The above code gives different values every time you run it, because PyTorch initializes a new
set of parameters every time. Initialization plays a big role in training deep networks. Sometimes
different layer types even have different initialization strategies.

When you run the above code, you will see that nn.Linear includes a weight matrix and a bias
vector. Technically, it really should be an affine layer rather than linear.

import torch

from torch import nn

from torch import optim

ce = nn.CrossEntropyLoss(reduction='sum')

w = nn.Linear(3, 2)

opt = optim.SGD(w.parameters(), lr=0.1)

for i in range(20):

opt.zero_grad()

fake data

1

x_i = torch.rand(3)

y_i = torch.tensor(i % 2)

loss = ce(w(x_i), y_i)

print(loss)

loss.backward()

opt.step()

The step size is 0.1 as specified in lr. In PyTorch and the deep learning community, the step
size is often called the learning rate.

The line zero_grad() is critical as it clears any gradient on the graph. If you forget to
zero_grad(), the gradients accumulate and you’d be optimizing towards the wrong direction.

2

