INFR10086 Machine Learning (MLG) Semester 2, 2023/4

Tutorial 3: PyTorch

import torch

from torch import nn

ce = nn.CrossEntropyLoss(reduction="'sum')

x_1i = torch.tensor([1.0, 2.0, 3.0])

w = torch.tensor([[4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], requires_grad=True)
y_i = torch.tensor(1l)

loss = ce(w @ x_i, y_i)

print(loss)

For the code above, w would predict 1 given x_i, regardless of what y_i is. The variable y_1i is
the label we assign to x_i. If the prediction of w agrees with y_i (when they both are 1), then the
loss should be low, so it’s no surprise that the loss is close to 0.

Because the dot product for class 0 is 32 and the dot product for class 1 is 50, the gap is so
large that exp(32 — 50) is a tiny number. As a consequence, 1/(1 + exp(32 — 50)) is very close to
1, and —log(1) is 0.

import torch

from torch import nn

w = nn.Linear(3, 2)
print(list(w.parameters()))

The above code gives different values every time you run it, because PyTorch initializes a new
set of parameters every time. Initialization plays a big role in training deep networks. Sometimes
different layer types even have different initialization strategies.

When you run the above code, you will see that nn.Linear includes a weight matrix and a bias
vector. Technically, it really should be an affine layer rather than linear.

import torch
from torch import nn
from torch import optim

ce = nn.CrossEntropyLoss(reduction="'sum')
w = nn.Linear(3, 2)

opt = optim.SGD(w.parameters(), 1lr=0.1)

for i in range(20):
opt.zero_grad()

fake data

torch.rand(3)
torch.tensor(i % 2)

x_1
y_1i

loss = ce(w(x_i), y_1i)
print (loss)
loss.backward ()

opt.step()

The step size is 0.1 as specified in 1r. In PyTorch and the deep learning community, the step
size is often called the learning rate.

The line zero_grad() is critical as it clears any gradient on the graph. If you forget to
zero_grad (), the gradients accumulate and you’d be optimizing towards the wrong direction.

