
INFR10086 Machine Learning (MLG) Semester 2, 2023/4

Tutorial 3: PyTorch

In this tutorial, we will introduce PyTorch, a package for building and running deep neural
networks.

Implementation. Before we begin, you will need to install PyTorch by doing the following
in your terminal.

$ pip install torch

To check whether you have the package properly installed, you can run the following in your
python REPL.

>>> import torch

>>>

If you see nothing, that’s good news and it means the package has been insatlled properly.

The main use of PyTorch is to automate the computation of a gradient. Up until now, we
have been deriving gradients by hand. Once the parameters are nested inside several function
applications, deriving gradients can be tedious and error prone. To allow PyTorch to help us derive
the gradient of a function, we need to specify the function. The way we specify a function is by
constructing a computation graph.

1 Basic elements

PyTorch operates on tensors. For the purpose of this tutorial (and this course), a tensor is simply
a multidimensional array, a generalization of matrices. A vector is an order-1 tensor; a matrix is
an order-2 tensor. Tensors in PyTorch are intentionally designed to be like numpy arrays.

>>> import torch

>>> a = torch.tensor([1, 2, 3])

>>> b = torch.tensor([4, 5, 6])

>>> a + b

[5, 7, 9]

To specify a function as a computation graph, we need to create vertices and edges. Every
tensor is a vertex, and every operation creates a new vertex. The edges are managed internally by
PyTorch, and are something we don’t need to worry in most cases. The above code creates the
following graph.
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2 Linear regression

Let’s start with computing the mean-squared error, something we are faimilar with. Given a data
set {(x1, y1), . . . , (xn, yn)}, the mean-squared error can be written as

L = ∥Xw − y∥22 (1)

where
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We can decompose the computation of L into the following graph.
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The same math equation can be expressed in python code as loss = torch.norm(X @ w - y) ** 2.
The python code is again intentionally similar to the math equation. Every vertex in PyTorch has
a backward() function. We can just do loss.backward() to compute the gradient. Every vertex
also a grad field, and we can use w.grad to get the resulting gradient. The code for computing a
single gradient would become the following.

import torch

X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]])

w = torch.tensor([3.0, 2.0, 1.0], requires_grad=True)

y = torch.tensor([2.0, 4.0, 8.0])

loss = torch.norm(X @ w - y) ** 2

loss.backward()

print(w.grad)

PyTorch has its own mean-squared error called torch.nn.MSELoss. Below is another version
of computing a gradient with MSELoss.
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import torch

from torch import nn

mse = nn.MSELoss(reduction='sum')

X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]])

w = torch.tensor([3.0, 2.0, 1.0], requires_grad=True)

y = torch.tensor([2.0, 4.0, 8.0])

loss = mse(X @ w, y)

loss.backward()

print(w.grad)

Implementation. Run the above PyTorch code.

Implementation. We know that the gradient of L is 2(X⊤Xw − X⊤y). Run the code
below. Is the result the same as the one computed with PyTorch?

import numpy

X = numpy.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]])

w = numpy.array([3.0, 2.0, 1.0])

y = numpy.array([2.0, 4.0, 8.0])

print(2 * (X.T @ (X @ w) - X.T @ y))

3 Logistic regression

For this example, we are going to compute the gradient of log loss. Recall that given a data set
{(x1, y1), . . . , (xn, yn)}, the log loss for binary classification is

L =
n∑

i=1

log
(
1 + exp(−yiw

⊤xi)
)
. (3)

Note that yi ∈ {+1,−1}. Also recall that the probability of yi given xi is defined as

p(yi|xi) =
1

1 + exp(−yiw⊤xi)
. (4)

Discussion. Show that

1yi=+1[− log p(yi = 1|xi)] + (1− 1yi=1)[− log p(yi = −1|xi)] = − log p(yi|xi), (5)

where

1c =

{
1 if c is true

0 otherwise
(6)

In general Ez∼q(z)[− log p(z)] =
∑

z q(z)[− log p(z)] is called the cross entropy of p relative to
q. Can you see that the left hand side is cross entropy?
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In PyTorch, the labels are integers counting from 0, so for binary classification, the classes
are 0 and 1 (as opposed to +1 and −1). In principle, one weight vector is enough to do binary
classification. If you can compute p(yi = +1|xi), then p(yi = −1|xi) has to be 1 − p(yi = +1|xi).
PyTorch uses the log of softmax to compute cross entropy, and only takes as input the results of
the dot product. In this case, it is typical to use two weight vectors (one weight vector per class).

import torch

from torch import nn

ce = nn.CrossEntropyLoss(reduction='sum')

x_i = torch.tensor([1.0, 2.0, 3.0])

w = torch.tensor([[4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], requires_grad=True)

y_i = torch.tensor(1)

loss = ce(w @ x_i, y_i)

print(loss)

Discussion. Why is the cross entropy loss above 0, when y_i = torch.tensor(1)?

Implementation. Change the code above and let y_i = torch.tensor(0). What is the
loss now?

Discussion. Recall that if we express the probability with softmax

p(y = +1|x) =
exp(w⊤

+1x)

exp(w⊤
+1x) + exp(w⊤

−1x)
=

1

1 + exp(w⊤
−1x− w⊤

+1x)
(7)

Run the following code.

import numpy

import math

x_i = numpy.array([1.0, 2.0, 3.0])

w = numpy.array([[4.0, 5.0, 6.0], [7.0, 8.0, 9.0]])

s = w @ x_i

print(s)

loss = math.log(1 + math.exp(s[1] - s[0]))

print(loss)

Is this the same loss value that you get when you let y_i = torch.tensor(0)?

Instead of writing our own matrix multiplication, it is more common to use the torch.nn.Linear
in PyTorch. The matrix w in our code above is 2×3, but in torch.nn.Linear the input dimension
goes before the output dimension. Instead of using @ for matrix multiplication as in w @ x_i,
torch.nn.Linear actually needs to be called like a function, as in w(x_i).

import torch

from torch import nn

ce = nn.CrossEntropyLoss(reduction='sum')
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w = nn.Linear(3, 2)

x_i = torch.tensor([1.0, 2.0, 3.0])

y_i = torch.tensor(0)

loss = ce(w(x_i), y_i)

print(loss)

y_i = torch.tensor(1)

loss = ce(w(x_i), y_i)

print(loss)

Discussion. Run the above python code a few times. You will observe that it gives a
different result each time. What is going on?

Discussion. We can print the parameters in torch.nn.Linear by calling parameters().
Run the following code to inspect the parameters. What are the parameters?

import torch

from torch import nn

w = nn.Linear(3, 2)

print(list(w.parameters()))

Discussion. Do you think it is correct to say that torch.nn.Linear is linear? Or is it
actually affine?

4 Stochastic Gradient Descent

We will train classifiers on real data sets in another tutorial. For now, we will focus on getting
familiar with the basic usage of PyTorch. Below is a minimal example of stochastic gradient descent.

import torch

from torch import nn

from torch import optim

ce = nn.CrossEntropyLoss(reduction='sum')

w = nn.Linear(3, 2)

opt = optim.SGD(w.parameters(), lr=0.1)

for i in range(20):

opt.zero_grad()

# fake data

x_i = torch.rand(3)

y_i = torch.tensor(i % 2)

loss = ce(w(x_i), y_i)
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print(loss)

loss.backward()

opt.step()

Discussion. What is the step size of stochastic gradient descent in the above code?

Discussion. A common mistake is to forget zero_grad() when writing a training script.
In fact, if you comment out that line, the above code runs just fine. What do you think
zero_grad() does to the computation graph? Why is it a problem if we forget to write that
line?

6


	Basic elements
	Linear regression
	Logistic regression
	Stochastic Gradient Descent

