INFR10086 Machine Learning (MLG) Semester 2, 2024/5

Practice Exam

1. In this question, we will look at the hinge loss for binary classification. Recall that a linear
classifier has the form

+1 ifwlz>0

fz) = { (1)

—1 otherwise

The hinge loss for binary classification with linear classifier is defined as

Liinge(z, y; w) = max(1 — yw 'z, 0), (2)
where x € R? and y € {+1,—1}.
(a) Show that the hinge loss is an upper bound of the zero-one loss
Loi(w, y;w) = 17 1 co- (3)
In other words, show that

Loi(z,y;w) < Luinge(, y; w) (4)

for all z € R, y € {4+1, -1}, and w € R,
(b) In the following three steps, we will look at the convexity of hinge loss.
(i) Show that

max(a + b, c + d) < max(a, c¢) + max(b, d) (5)
for any a,b,c,d € R.
(i) Let
h(z) = max(f(z), g(z)) (6)

for any two convex functions f and g. Use (b) and show that h is convex in z.
(iii) Use (c) and show that the hinge loss Lpinge is convex in w for any z € R? and
y € {+1,-1}.
(c) If we happen to find a linear classifier that achieves a hinge loss of 0 on a data set, what
does that tell us about the optimal value of log loss on that particular data set?



2. In this question, we are going to implement a layer called layer normalization in a neural
network library. Formally, layer normalization is a function

where

(a) Show that

0'2:

d
> -t (9)
=1

(b) The forward function is as defined, and is straightforward to implement. The back-
ward function (as part of the backpropagation) is more involved. Given the forward
computation, the backward computation can be worked out using the total derivative

ISHN

L 0L ofi OLou OL do

Rl gLop | 9n 90 1
dr; 2= 0f 0x; | Opow; | o ox;’ (10)

where f; is a shorthand for the i-th coordinate of f(z) and L is the loss function. Note
that 0L/9f; will be given during backpropagation. Our goal is the derive the rest of the

terms.
i. Show that
595]. _ % (11)
ii. Show that
gg =i, (12)
where 1. is 1 when c is true and 0 otherwise.
iii. Show that
o = 2 (13)
iv. Show that
d
‘(xzzgé(—xi(j;”). (14)

=1



v. Show that
d

5= Sor () 5 (1) 1)

=1

3. Suppose we have a data set organized as a matrix X where each row vector is a sample point.
We know that the first principal component of X is a vector w; such that
w! XT Xw

_ 16
w1 arglrl?ax T (16)

a) Show that if wq is the optimal solution for max,, @, then aw; is also an optimal
ww
solution for any a # 0.

(b) Suppose we rotate the entire data set by a rotation matrix R, where RT R = I. Show that
if wq is the first principal component of X, then Rw; is the first principal component of
the rotated data set X R.



