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GMM: Reminder

® Hard boundaries are exchanged for flexible and probabilistic soft boundaries

® Immense flexibility: p(x,|---) can take the form of any probability density
including Bernoulli distribution

® Expectation Maximisation instead of Maximum Likelihood
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Learning Outcomes

1. Move from Gaussian Mixture Models to Latent Variable Models (abstraction)
2. Understand the key motivation behind Expectation Maximisation (EM).

3. Review observed and latent variables.

4. Study the EM formula

References:

1. Bishop, Pattern Recognition and Machine Learning,
Springer, 2008. (Section 9.4)
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General latent Variable model

Two sets of random variables X and Z.

X captures all observed variables.

Z captures all unseen/hidden/latent/unobserved variables
Joint probability model is parametrised by 8 € © as

p(X,Z|0)

4/19



EM - Key motivation

e |t is hard to optimise for marginal log-likelihood
® Typically, it is easier to optimise the log-likelihood for the complete data

max log p(X|0)

max log p(X,Z|0)

5/19



Jensen’s Inequality - Reminder

Theorem
If f: R — R is a convex function and x is a random variable, then

Ef(z) > fEx

2

® For example f(x) = 2? is a convex function and E z? > (E z)?

o?(x) =Ex2* — (Ex)* >0
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Kullback-Leibler Divergence - Reminder

For discrete probability distributions p and g on the same probability space X’
The KL-divergence is defined by

KLOo) = Eorp 105 23] = 57 pto)10g 22

q(z)| = q(z)

The KL-divergence measures the "distance" between p and ¢ but
The KL-divergence is not a metric.
The KL-divergence is not a symmetric.

KL(pllg) = 0
KL(pllg) # KL(qllp)
KL(pllp) = 0
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EM - Key motivation

e |t is hard to optimise for marginal log-likelihood
® Typically, it is easier to optimise the log-likelihood for the complete data

max log p(X|0)

max log p(X,Z|0)
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Lower Bound for Marginal Log-likelihood

logp(X|0) = log» p(X,Z[6)
Z
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Lower Bound for Marginal Log-likelihood

Let ¢(Z) be any discrete probability function on Z

logp(X[6) = 10gZpXZ|6’)

- e (55)

10/19



Lower Bound for Marginal Log-likelihood

Let ¢(Z) be any discrete probability function on Z

logp(X|0) = 10gZpXZ\9)

— logz < XZ)‘0)>

. Soom(530)

V4

L(q,0)
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EM - Visualisation - 1
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Lower Bound for Marginal Log-likelihood

Let ¢(Z) be any discrete probability function on Z

logp(X|0) > ) q(Z)log (%)

/

g

L(q,0)
evidence > Evidence Lower BOund

In EM, we maximise the ELBO w.r.t. to ¢ and @

Oy = arg max (arg max L(q, 0)>
q
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EM - Visualisation - 2

Oy = arg max (arg max L(q, 9))
q

/
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Figure based on Figure 9.14 of Bishop (2008). 14/10



ELBO reformulation

7)o p(X,Z|0)
zzjq g( )
pmxopxw
()
o D Z|X 0)
;q w0 (M5557) + 3
—KL[q(Z)|[p(Z|X, )] +10gp(X!9)

log p(X|0) = L(q, 8) + KL[q]|p]

(Z)log p(X]6)
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EM - Visualisation

log p(X|0) = L(q, 8) + KL[q]|p]

KLIq||p]

 — log p(X10)

Figure 9.11 of Bishop (2008).
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EM - Visualisation

log p(X|0) = L(q, 8) + KL[q]|p]

KL[q||p]

SR A A

KL[g|[p] =0

-———- 10gp(X|0°1d) log p(X|0™")

E(q,HOId) ﬁ(q, anew)

Figure 9.12-3 of Bishop (2008). .



EM - Summary - 1

1. Choose an initial 8°
2. Expectation Step
- Let ¢*(Z) = p(Z|X, 6°'Y), giving the best lower bound at §°'4

— Let
L * _ * O M
J(0>.—<q,0>—;q(z>1g( ¢*(Z) )

Expectation

3. Maximisation Step
0" = arg max J(0)

4. Go to step 2 until convergence
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EM - Summary - 2

. Maximum likelihood estimation is easy if we observe all the values of all the
relevant random variables.

. In case of missing data and/or latent variables, then Maximum likelihood
estimation becomes hard.

. In such cases, it is often simpler (but not always faster) to use the EM
algorithm.

. EM alternates between inferring the missing values given the parameters (E
step), and then optimising the parameters given the filled in data (M step).

. EM monotonically increases the observed data log likelihood.
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