Machine Learning Expectation Maximisation

Kia Nazarpour

GMM: Reminder

- Hard boundaries are exchanged for flexible and probabilistic soft boundaries
- Immense flexibility: $p(\mathbf{x}_n|\cdots)$ can take the form of any probability density including Bernoulli distribution
- Expectation Maximisation instead of Maximum Likelihood

Learning Outcomes

- 1. Move from Gaussian Mixture Models to Latent Variable Models (abstraction)
- 2. Understand the key motivation behind Expectation Maximisation (EM).
- 3. Review observed and latent variables.
- 4. Study the EM formula

References:

1. Bishop, *Pattern Recognition and Machine Learning*, Springer, 2008. (Section 9.4)

General latent Variable model

- Two sets of random variables X and Z.
- X captures all observed variables.
- Z captures all unseen/hidden/latent/unobserved variables
- ullet Joint probability model is parametrised by $oldsymbol{ heta} \in \Theta$ as

$$p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})$$

EM - Key motivation

- It is hard to optimise for marginal log-likelihood
- Typically, it is easier to optimise the log-likelihood for the complete data

$$\max_{\boldsymbol{\theta}} \log p(\mathbf{X}|\boldsymbol{\theta})$$

$$\max_{\boldsymbol{\theta}} \log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})$$

Jensen's Inequality - Reminder

Theorem

If $f: \mathcal{R} \to \mathcal{R}$ is a convex function and x is a random variable, then

$$\mathbb{E} f(x) \ge f \, \mathbb{E} x$$

• For example $f(x) = x^2$ is a convex function and $\mathbb{E} x^2 \ge (\mathbb{E} x)^2$

$$\sigma^{2}(x) = \mathbb{E} x^{2} - (\mathbb{E} x)^{2} \ge 0$$

Kullback-Leibler Divergence - Reminder

- For discrete probability distributions p and q on the same probability space \mathcal{X}
- The KL-divergence is defined by

$$\mathrm{KL}(p||q) = \mathbb{E}_{x \sim p} \left[\log \frac{p(x)}{q(x)} \right] = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$

- The KL-divergence measures the "distance" between p and q but
- The KL-divergence is not a metric.
- The KL-divergence is not a symmetric.

$$KL(p||q) \ge 0$$

$$KL(p||q) \ne KL(q||p)$$

$$KL(p||p) = 0$$

EM - Key motivation

- It is hard to optimise for marginal log-likelihood
- Typically, it is easier to optimise the log-likelihood for the complete data

$$\max_{\boldsymbol{\theta}} \log p(\mathbf{X}|\boldsymbol{\theta})$$

$$\max_{\boldsymbol{\theta}} \log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})$$

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

Let $q(\mathbf{Z})$ be any discrete probability function on \mathcal{Z}

$$\begin{split} \log p(\mathbf{X}|\boldsymbol{\theta}) &= & \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \\ &= & \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \left(\frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} \right) \end{split}$$

Let $q(\mathbf{Z})$ be any discrete probability function on \mathcal{Z}

$$\begin{split} \log p(\mathbf{X}|\boldsymbol{\theta}) &= & \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \\ &= & \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \left(\frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} \right) \\ &\geq & \underbrace{\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left(\frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} \right)}_{\mathcal{L}(q, \boldsymbol{\theta})} \end{split}$$

EM - Visualisation - 1

Let $q(\mathbf{Z})$ be any discrete probability function on \mathcal{Z}

$$\log p(\mathbf{X}|\boldsymbol{\theta}) \geq \underbrace{\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left(\frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})}\right)}_{\mathcal{L}(q,\boldsymbol{\theta})}$$
evidence > Evidence Lower BOund

In EM, we maximise the ELBO w.r.t. to q and θ

$$\hat{oldsymbol{ heta}}_{ ext{EM}} = rg \max_{oldsymbol{ heta}} \left(rg \max_{q} \mathcal{L}(q, oldsymbol{ heta})
ight)$$

EM - Visualisation - 2

Figure based on Figure 9.14 of Bishop (2008).

ELBO reformulation

$$\mathcal{L}(q, \boldsymbol{\theta}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left(\frac{p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})}{q(\mathbf{Z})} \right)$$

$$= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left(\frac{p(\mathbf{Z} | \mathbf{X}, \boldsymbol{\theta}) p(\mathbf{X} | \boldsymbol{\theta})}{q(\mathbf{Z})} \right)$$

$$= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left(\frac{p(\mathbf{Z} | \mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})} \right) + \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X} | \boldsymbol{\theta})$$

$$= -\text{KL} \left[q(\mathbf{Z}) \| p(\mathbf{Z} | \mathbf{X}, \boldsymbol{\theta}) \right] + \log p(\mathbf{X} | \boldsymbol{\theta})$$

$$\log p(\mathbf{X} | \boldsymbol{\theta}) = \mathcal{L}(q, \boldsymbol{\theta}) + \text{KL}[q | p]$$

EM - Visualisation

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \mathcal{L}(q, \boldsymbol{\theta}) + \mathrm{KL}[q||p]$$

Figure 9.11 of Bishop (2008).

EM - Visualisation

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \mathcal{L}(q, \boldsymbol{\theta}) + \mathrm{KL}[q||p]$$

Figure 9.12-3 of Bishop (2008).

EM - Summary - 1

- 1. Choose an initial θ^{old}
- 2. Expectation Step
 - Let $q^*(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})$, giving the best lower bound at $\boldsymbol{\theta}^{\text{old}}$
 - Let

$$J(\boldsymbol{\theta}) := (q^*, \boldsymbol{\theta}) = \underbrace{\sum_{\mathbf{Z}} q^*(\mathbf{Z}) \log \left(\frac{p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})}{q^*(\mathbf{Z})} \right)}_{\text{Expectation}}$$

3. Maximisation Step

$$\boldsymbol{\theta}^{\text{new}} = \arg \max_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

4. Go to step 2 until convergence

EM - Summary - 2

- 1. Maximum likelihood estimation is easy if we observe all the values of all the relevant random variables.
- 2. In case of missing data and/or latent variables, then Maximum likelihood estimation becomes hard.
- 3. In such cases, it is often simpler (but not always faster) to use the EM algorithm.
- 4. EM alternates between inferring the missing values given the parameters (E step), and then optimising the parameters given the *filled* in data (M step).
- 5. EM monotonically increases the observed data log likelihood.