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Machine learning is about programming with data

• Minimizing a loss function on a data set produces a program.

• How do we know if the program is correct?
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Correctness of classical programs

• A program is correct if it has the desired behavior on all input.

• Correctness is achieved through mathematical proofs and careful engineering.
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Correctness of learned programs

training
set

classifier
training

• Imagine we have trained a binary classifier.

• We know the loss on the training set.

• Even on the training set, the loss might not be 0.

• Can we say anything about the loss outside of the training set?

• Is it even possible? What assumptions do we need?
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The big picture

• What is generalization? PAC learning and ERM

• When is generalization possible? Uniform convergence and VC dimension

• How to achieve generalization? Overfitting, underfitting, and regularization

• Generalization of neural networks. Universal approximation, overparameterization,
and interpolation
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What happens if the data is Gaussian?
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Gaussian data

• We need to know

– the two distributions are Gaussian
– their means
– their variances.

• The decision boundary

– can be found without training
– is optimal (in the sense that no other boundary achieves a lower error).

• Next questions

– What if we don’t know the means?
– What if we don’t know the variances?
– What if the two distributions are not Gaussian?
– What if we don’t know what the distributions are?
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Generalization
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Generalization

• A data set is said to be i.i.d. (independent and identically distributed) if the
data points come from the same distribution and are statistially independent from
each other.

• A function (or program) is said to generalize to data within a distribution if the
function achieves a low error on data drawn from that distribution in expectation.

• In particular, if a function generalizes then the function has to achieve a low error
on both the training set and the test set.

• We do not know the distribution, and only have data drawn from the distribution.

• The only assumption is i.i.d. data.
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Generalization

• There exists a distribution D where both the training data and the test data are
drawn from.

• The training set S = {(x1, y1), . . . , (xn, yn)} includes i.i.d. samples drawn from D.

• The training error for a loss ℓ and a program h is defined as

LS(h) =
1

n

n∑
i=1

ℓ(yi , h(xi )). (1)

• If we have a test set S ′, then LS ′(h) is the error on the test set (or test error for
short) for a program h.
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Generalization

• The generalization error for a program h is defined as

LD(h) = E(x ,y)∼D[ℓ(y , h(x))]. (2)

• The test error LS ′(h) of a program h is an estimate of the generalization error
LD(h).

ES∼Dn [LS(h)] = ES ′∼Dn′ [LS ′(h)] = LD(h) (3)

• The goal of learning is to find a program h with low generalization error LD(h).
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Learning algorithms and hypothesis classes

• A learning algorithm A is a function that takes a data set of size m and returns a
function from the hypothesis class H.

• A hypothesis class H is the set of possible programs of a particular form.

• For example, a linear classifier is H = {x 7→ w⊤x : w ∈ Rd}.
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Probably approximately correct

A hypothesis class H is PAC-learnable with a learning algorithm A if for any
distribution D, and any ϵ > 0 and 0 ≤ δ ≤ 1, there exists N > 0 such that

PS∼Dn

[
LD(A(S))− min

h′∈H
LD(h

′) > ϵ

]
< δ (4)

for any n ≥ N.
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Probably approximately correct

• The data set S is is a random variable.

• A(S) is a program returned by A after training on S .

• LD(A(S)) is also a random variable.

• minh′∈H LD(h
′) is the best error we can achieve among all programs in H.

• ϵ is the error tolerance, the approximately correct part.

• δ is the confidence probability, the probably part.
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Probably approximately correct

• Imagine we do the following experiment many many times.

1. Draw a training set S and obtain a trained program A(S).
2. Evaluate LD(A(S))−minh′∈H LD(h

′).
3. Repeat

• On average, the chance of seeing LD(A(S))−minh′∈H LD(h
′) > ϵ is δ.

• Think of ϵ and δ as something small, close to 0.

• With high probability 1− δ, the two terms LD(A(S)) and minh′∈H LD(h
′) only

differ by a small amount ϵ.

• With high probability, the program learned by A achieves a similar error to the
best program in H.
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PAC learning

• PAC learnability is merely a definition.

• The minimum number of samples required, N, also known as sample complexity,
is a function of H, ϵ, and δ.

• We can now ask, “is the set of linear classifiers PAC learnable if we minimize the
zero-one loss on a training set?”
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Empirical risk minimization

• Minimizing the loss on a training set is also known as empirical risk
minimization (ERM).

AERM,H(S) = hERM = argmin
h∈H

1

n

n∑
i=1

ℓ(yi , h(xi )) (5)

• The set of linear classifiers is Hlin = {w 7→ w⊤x : w ∈ Rd}.

• We can now formally ask, “is the set of linear classifiers Hlin PAC learnable with
ERM?”

• And if so, how does the sample complexity N depends on Hlin, ϵ, and δ?
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The universe of all programs

• Instead of choosing the set linear classifiers Hlin = {x 7→ w⊤x : w ∈ Rd}, can we
choose Huniverse = {any function in the universe}?

• We can now ask, “is Huniverse PAC learnable with ERM or with any other learning
algorithms?”
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Probably approximately correct

A hypothesis class H is PAC-learnable with a learning algorithm A if for any
distribution D, and any ϵ > 0 and 0 ≤ δ ≤ 1, there exists N > 0 such that

PS∼Dn

[
LD(A(S))− min

h′∈H
LD(h

′) > ϵ

]
< δ (6)

for any n ≥ N.
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No free lunch theorem

Suppose |X | = 2m. For any learning algorithm A, there is a distribution D and
f : X → {0, 1} such that LD(f ) = 0, but

PS∼Dm

[
LD(A(S)) ≥

1

10

]
≥ 1

10
. (7)
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No free lunch theorem

• The 2 and 10 are arbitrary constants.

• In words, for any learning algorithm, there exists a distribution and a perfect
function, but the learning algorithm has a sufficiently large error with sufficiently
high probability.

• What is the problem?

• A cheater is an algorithm that knows D.

• The universe always includes whatever the cheater can find.

• Don’t compare to the cheater that knows D. Instead, compare to the best in the
hypothesis space.
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No free lunch theorem
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