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Machine learning is about programming with data

® Minimizing a loss function on a data set produces a program.

® How do we know if the program is correct?
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Correctness of classical programs

® A program is correct if it has the desired behavior on all input.

® Correctness is achieved through mathematical proofs and careful engineering.
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Correctness of learned programs

training
set

training

> classifier

Imagine we have trained a binary classifier.

We know the loss on the training set.

Even on the training set, the loss might not be 0.

Can we say anything about the loss outside of the training set?

Is it even possible? What assumptions do we need?
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The big picture

What is generalization? PAC learning and ERM
When is generalization possible? Uniform convergence and VC dimension
How to achieve generalization? Overfitting, underfitting, and regularization

Generalization of neural networks. Universal approximation, overparameterization,
and interpolation
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What happens if the data is Gaussian?
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Gaussian data

® \We need to know

— the two distributions are Gaussian
— their means
— their variances.

® The decision boundary

— can be found without training
— is optimal (in the sense that no other boundary achieves a lower error).

® Next questions
— What if we don't know the means?
— What if we don't know the variances?
— What if the two distributions are not Gaussian?
— What if we don't know what the distributions are?
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Generalization
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Generalization

A data set is said to be i.i.d. (independent and identically distributed) if the
data points come from the same distribution and are statistially independent from
each other.

A function (or program) is said to generalize to data within a distribution if the
function achieves a low error on data drawn from that distribution in expectation.

In particular, if a function generalizes then the function has to achieve a low error
on both the training set and the test set.

We do not know the distribution, and only have data drawn from the distribution.

The only assumption is i.i.d. data.
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Generalization

There exists a distribution D where both the training data and the test data are
drawn from.

The training set S = {(x1,y1),...,(Xn, ¥n)} includes i.i.d. samples drawn from D.

The training error for a loss £ and a program h is defined as
1 n
Ls(h) =—> 4y h(x). (1)
i=1

If we have a test set S’, then Lg/(h) is the error on the test set (or test error for
short) for a program h.
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Generalization

® The generalization error for a program h is defined as
Lp(h) = E(xy)~pll(y, h(x))]- (2)

® The test error Lg/(h) of a program h is an estimate of the generalization error
Lp(h).

Es~pn[Ls(h)] = Eg pw[Ls/(h)] = Lp(h) (3)

® The goal of learning is to find a program h with low generalization error Lp(h).
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Learning algorithms and hypothesis classes

® A learning algorithm A is a function that takes a data set of size m and returns a
function from the hypothesis class H.

® A hypothesis class H is the set of possible programs of a particular form.

® For example, a linear classifier is H = {x — w'x: w € R}
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Probably approximately correct

A hypothesis class H is PAC-learnable with a learning algorithm A if for any
distribution D, and any € > 0 and 0 < § < 1, there exists N > 0 such that

Ps.pn | Lp(A(S)) — ignelgt Lp(h') > €| <& (4)

for any n > N.
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Probably approximately correct

The data set S is is a random variable.

A(S) is a program returned by A after training on S.

Lp(A(S)) is also a random variable.

miny ey Lp(h') is the best error we can achieve among all programs in .
€ is the error tolerance, the approximately correct part.

0 is the confidence probability, the probably part.
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Probably approximately correct

Imagine we do the following experiment many many times.
1. Draw a training set S and obtain a trained program A(S).

2. Evaluate LD(A(S)) — miny ey LD(hI)
3. Repeat
On average, the chance of seeing Lp(A(S)) — miny ey Lp(h) > €is 0.

Think of € and § as something small, close to 0.

With high probability 1 — ¢, the two terms Lp(A(S)) and miny ey Lp(h') only
differ by a small amount e.

With high probability, the program learned by A achieves a similar error to the
best program in H.
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PAC learning

® PAC learnability is merely a definition.

® The minimum number of samples required, N, also known as sample complexity,
is a function of H, ¢, and 6.

® \We can now ask, "“is the set of linear classifiers PAC learnable if we minimize the
zero-one loss on a training set?”
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Empirical risk minimization

Minimizing the loss on a training set is also known as empirical risk
minimization (ERM).

RS
Aerm,#(S) = herm = argmin - > Uyi, h(xi)) (5)
€ i=1

The set of linear classifiers is Hji, = {w — w'x: w € R}

We can now formally ask, “is the set of linear classifiers H);, PAC learnable with
ERM?"

And if so, how does the sample complexity N depends on Hj;,, €, and §7
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The universe of all programs

® Instead of choosing the set linear classifiers Hj, = {x — wlix:we Rd}, can we
choose Hyniverse = {any function in the universe}?

® \We can now ask, “is Huniverse PAC learnable with ERM or with any other learning
algorithms?”
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Probably approximately correct

A hypothesis class H is PAC-learnable with a learning algorithm A if for any
distribution D, and any € > 0 and 0 < § < 1, there exists N > 0 such that

Ps.pn |Lp(A(S)) = min Lo() > | <3 (6)

for any n > N.
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No free lunch theorem

Suppose |X| = 2m. For any learning algorithm A, there is a distribution D and
f: X — {0,1} such that Lp(f) =0, but

20/22



No free lunch theorem

The 2 and 10 are arbitrary constants.

In words, for any learning algorithm, there exists a distribution and a perfect
function, but the learning algorithm has a sufficiently large error with sufficiently
high probability.

What is the problem?
A cheater is an algorithm that knows D.
The universe always includes whatever the cheater can find.

Don't compare to the cheater that knows D. Instead, compare to the best in the
hypothesis space.
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No free lunch theorem
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