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No free lunch theorem

• A cheater is an algorithm that knows the distribution D.

• If H is the universe, we inadvertently include all the options a cheater has.

• If H is the set of all functions, H is not PAC learnable.
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Error decomposition

LD(h) = LD(h)− min
h′∈H

LD(h
′)︸ ︷︷ ︸

estimation error

+ min
h′∈H

LD(h
′)︸ ︷︷ ︸

approximation error

(1)

• Approximation error is due to the choice of H.

• Estimation error is due to not finding the best program in H.
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Tradeoff between model complexity and generalization

• When we say we only compare to the best in H, we are comparing against
minh∈H LD(h).

• When H is large, minh∈H LD(h) becomes lower.

• When H is the universe of all functions, we cannot learn.

• H needs to be about the right size.

• H can actually be a large, but the range of A needs to be about the right size.

• For example, we can only run a finite number of steps with stochastic gradient
descent, so the range we can explore is limited by the algorithm.
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Uniform convergence

A hypothesis class H has uniform convergence property if for any distribution D, and
any ϵ > 0 and 0 ≤ δ ≤ 1, there exists N > 0 such that for every h ∈ H,

PS∼Dn [|LS(h)− LD(h)| > ϵ] < δ (2)

for all n ≥ N.
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Uniform convergence

• Uniform convergence assures that the training error and generalization error are
not far from each other.

• This has to happen for all h ∈ H, the uniform part (and a strong requirement).
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Comparing PAC learning and uniform convergence
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Uniform convergence

• If we have uniform convergence,

LD(hERM) ≤ LS(hERM) + ϵ ≤ LS(h) + ϵ ≤ LD(h) + ϵ+ ϵ (3)

for any h ∈ H.

• In particular,

LD(hERM) ≤ min
h′∈H

LD(h
′) + 2ϵ. (4)

• If H has uniform convergence property, then H is PAC-learnable with ERM.
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Fundamental theorem of statistical learning
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Vapnik–Chervonenkis dimension

• VC dimension is the largest number of points that H can shatter.

• Given n data points, there are 2n ways of label them {+1,−1}.

• A set of n points is shattered by H if there is an arrangement of n points such
that classifiers in H can produce all 2n ways of labeling.
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Shattering points in 2D

• We could shatter 3 points with a line in 2D.

• However, we cannot shatter 4 points with a line in 2D.

• The VC dimension of lines in 2D is 3.

• In general, linear classifiers with p parameters have VC dimension p + 1.

• We can again shatter 4 points with a 2-layer MLP in 2D.

• Neural networks have larger VC dimension than linear classifiers.

• The sine function has infinite VC dimension.
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VC generalization bounds

• With probability 1− δ, for all h ∈ H

LD(h) ≤ LS(h) + 2

√
8d log(en/d) + 2 log(4/δ)

n
(5)

• d is called the VC dimension.

• For linear classifiers Hlin = {x 7→ w⊤x : w ∈ Rp}, VC-dim(Hlin) = p + 1.

• For multilayer perceptrons with p edges, VC-dim(H) = O(p log p).

• These results are independent of learning algorithms.

• In particular, it is independent of how ERM is done.
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Generalization bounds

• Many generalization bounds have the following form.

• With probability 1− δ, for all h ∈ H

LD(h) ≤ LS(h) +

√
C (H)

n
+

√
log(1/δ)

2n
. (6)

• n is the number of samples.

• C (H) is a capacity measure of H.

• There is a family of uniform convergence results.
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Sample complexity

• How many samples do we need to achieve a certain error?

• How large should n to get to ϵ?√
C (H)

n
+

√
log(1/δ)

2n
≤ ϵ (7)

• In other words,

n = O

(
C (H) + log(1/δ)

ϵ2

)
(8)
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Interpreting generalization bounds

• VC generalization bounds

LD(h) ≤ LS(h) + 2

√
8d log(en/d) + 2 log(4/δ)

n
(9)

• When H is large, minh∈H LS(h) can be low.

• When H is large, d becomes large.

17 / 19



Capacity-generalization tradeoff
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