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The big picture

What is generalization? PAC learning and ERM
When is generalization possible? Uniform convergence and VC dimension
How to achieve generalization? Overfitting, underfitting, and regularization

Generalization of neural networks. Universal approximation, overparameterization,
and interpolation

2/26



Recap

® No free lunch theorem tells us we cannot PAC learn on the universe of functions.

® One error decomposition leads us to

Lp(h) = Lp(h) — min Lp(h inLp(h) . 1
p(h) = Lp(h) —min Lp(h) + min Lp(h) (1)
approximation error estimat??m error

® Choose a hypothesis class H to balance approximation error and estimation error.
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Recap

® Another error decomposition leads us to

Lp(h) = Ls(h) + Lp(h) — Ls(h). (2)
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Recap

Another error decomposition leads us to
Lp(h) = Ls(h) + Lp(h) — Ls(h). (2)

Empirirical risk minimization (ERM) attempts to minimize the training error
Ls(h).

Choose a hypothesis class such that we can have uniform convergence, i.e.,
Lp(h) — Ls(h) is small.

With probability 1 — ¢, for all h € H

Lo(h) < Ls(h) + 2\/8d|og(en/d) + 2|og(4/5), 3)

n

where d is the VC dimension of H.
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Capacity-generalization tradeoff

error

—— training error
—— generalization error

capacity measure
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Capacity-generalization tradeoff
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Capacity-generalization tradeoff
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Capacity-generalization tradeoff
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Sample complexity

® How many samples do we need to achieve a certain error?

® How large should n to get to €7

e

o (C(H) + |og(1/6))

® |n other words,

€2
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Optimization

® We can only do ERM for a limited number of cases, for example,
w = (XTX)™1XTy in linear regression.

® Recall that the convergence of an optimization algorithm tells us how many
iterations we need (how large t should be) to get to

Ls(he) —min Ls(h) <. (6)
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Optimization
We care about generalization of zero-one loss, not the cross entropy or the log
likelihood.
Cross entropy or the log likelihood are called surrogate losses.

Surrogate losses are easier to optimize than the task loss, and usually have some
connection to the task loss.

For example, log loss is easier to optimize than zero-one loss, and is a smooth
approximation of zero-one loss.
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Error decomposition

® QOptimization error

— Mismatch between the surrogate loss and the task loss
— Controlled by the optimization algorithm

® Estimation error

— Controlled if we do ERM and have uniform convergence
— Controlled by the capacity of A and the size of the training set

® Approximation error
— Controlled by the capacity of H
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Underfitting
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Underfitting

® A model is underfitting if there is another model that has a lower training.
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Underfitting

A model is underfitting if there is another model that has a lower training.
A model h is underfitting if there is f such that Ls(f) < Ls(h).

The better f is unknown unless we find it.

All models are underfitting with respect to ERM.

When people say a model is underfitting, they simply mean there is room to
improve the training error.
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Overfitting
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Overfitting

® A model is overfitting if there is another model that has a higher training error
but a lower test eror.
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Overfitting

A model is overfitting if there is another model that has a higher training error
but a lower test eror.

A model h is overfitting if there is f such that Ls(f) > Ls(h) and Ls/(f) < Ls/(h).

The better f is unknown unless we find it.

Models can overfit even when the gap |Ls(h) — Ls/(h)| between training and test
is not large.

When people say a model is overfitting, they simply mean there is a large gap
between the training and test error.
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loss

Overfitting
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—— training loss
—— test loss

epoch
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Capacity-generalization tradeoff

error

—— training error
—— generalization error

capacity measure
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In practice

We minimize a surrogate loss on the training set S, i.e., doing ERM.

We can only do ERM approximately most of the time, because of optimization
difficulty.

Suppose training gives us h.

We use a test set S’ and measure task loss L5/(f1) to approximate generalization
error.

We hope Lp(h) is small when Lg/(h) is small.
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Test set

Test error on a test set is used to approximate generalization error.

Test set is supposed to be considered as an indepdent data drawn from the
unknown distribution.

Sometimes we have hyperparameters (not learned from data) we need to tune, for
example, the step size in stochastic gradient descent.

What's the problem of using the test set to tune hyperparameters?
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Generalization
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Generalization
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Generalization

Development
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Generalization
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Image credit: (Recht et al., 2019)
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Large hypothesis classes

e Compare

1 = the set of two-layer neural networks with 512 hidden units (7)

Ho = the set of all two-layer neural networks (8)
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Large hypothesis classes

e Compare

1 = the set of two-layer neural networks with 512 hidden units (7)

Ho = the set of all two-layer neural networks (8)
® 7{; has a finite VC dimension, while the VC dimension of H5 is infinite!

® |t is much easier (and tempting) to reduce the training error by increasing the
hypothesis class.
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Overfitting
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Overfitting

Compare
wy = [0.206, —0.317]

wg = [—30.69,93.27, —2.65, —3.29, —0.124,0.0248,0.0017, 0.0000245,
—0.00000423, —0.0000000857]

The learned weights are either too large or too small for degree 9.

What if instead we optimize
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Regularization

—— degree 1
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Regularization
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L, Regularization

® The term %HWH% is called an Ly regularizer.
® |t is also known as weight decay.

® The expression

Ls(w) + 5 lw3 (10)
is the Lagrangian of

mmi/n Ls(w) (11)

st. w2 < B (12)
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L, Regularization

® The L, regularizer has an effect of controlling the capacity of the hypothesis class.

® Compare

H={x—w'x:weR9} (13)

H={x— w'x: lwll2 < B} (14)
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Generalization bound for bounded linear classifier

e With probability 1 — 9, for all h € H,

r2B2 43 log(2/6)

Lp(h) < Ls(h
p(h) < Ls(h) + - THE

where ||x||2 < r forany x € Sand H = {x+— w'x: |w|]» < B}.
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