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The big picture

• What is generalization? PAC learning and ERM

• When is generalization possible? Uniform convergence and VC dimension

• How to achieve generalization? Overfitting, underfitting, and regularization

• Generalization of neural networks. Universal approximation, overparameterization,
and interpolation
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Recap

• No free lunch theorem tells us we cannot PAC learn on the universe of functions.

• One error decomposition leads us to

LD(h) = LD(h)− min
h∈H

LD(h)︸ ︷︷ ︸
approximation error

+ min
h∈H

LD(h)︸ ︷︷ ︸
estimation error

. (1)

• Choose a hypothesis class H to balance approximation error and estimation error.
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Recap

• Another error decomposition leads us to

LD(h) = LS(h) + LD(h)− LS(h). (2)

• Empirirical risk minimization (ERM) attempts to minimize the training error
LS(h).

• Choose a hypothesis class such that we can have uniform convergence, i.e.,
LD(h)− LS(h) is small.

• With probability 1− δ, for all h ∈ H

LD(h) ≤ LS(h) + 2

√
8d log(en/d) + 2 log(4/δ)

n
, (3)

where d is the VC dimension of H.
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Capacity-generalization tradeoff
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Sample complexity

• How many samples do we need to achieve a certain error?

• How large should n to get to ϵ?√
C (H)

n
+

√
log(1/δ)

2n
≤ ϵ (4)

• In other words,

n = O

(
C (H) + log(1/δ)

ϵ2

)
(5)
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Optimization

• We can only do ERM for a limited number of cases, for example,
w = (X⊤X )−1X⊤y in linear regression.

• Recall that the convergence of an optimization algorithm tells us how many
iterations we need (how large t should be) to get to

LS(ht)− min
h∈H

LS(h) < ϵ. (6)

8 / 26



Optimization

• We care about generalization of zero-one loss, not the cross entropy or the log
likelihood.

• Cross entropy or the log likelihood are called surrogate losses.

• Surrogate losses are easier to optimize than the task loss, and usually have some
connection to the task loss.

• For example, log loss is easier to optimize than zero-one loss, and is a smooth
approximation of zero-one loss.
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Error decomposition

• Optimization error

– Mismatch between the surrogate loss and the task loss
– Controlled by the optimization algorithm

• Estimation error

– Controlled if we do ERM and have uniform convergence
– Controlled by the capacity of H and the size of the training set

• Approximation error

– Controlled by the capacity of H
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Underfitting

• A model is underfitting if there is another model that has a lower training.

• A model h is underfitting if there is f such that LS(f ) < LS(h).

• The better f is unknown unless we find it.

• All models are underfitting with respect to ERM.

• When people say a model is underfitting, they simply mean there is room to
improve the training error.
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Overfitting

• A model is overfitting if there is another model that has a higher training error
but a lower test eror.

• A model h is overfitting if there is f such that LS(f ) > LS(h) and LS ′(f ) < LS ′(h).

• The better f is unknown unless we find it.

• Models can overfit even when the gap |LS(h)− LS ′(h)| between training and test
is not large.

• When people say a model is overfitting, they simply mean there is a large gap
between the training and test error.
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Overfitting
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Capacity-generalization tradeoff
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In practice

• We minimize a surrogate loss on the training set S , i.e., doing ERM.

• We can only do ERM approximately most of the time, because of optimization
difficulty.

• Suppose training gives us ĥ.

• We use a test set S ′ and measure task loss LS ′(ĥ) to approximate generalization
error.

• We hope LD(ĥ) is small when LS ′(ĥ) is small.
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Test set

• Test error on a test set is used to approximate generalization error.

• Test set is supposed to be considered as an indepdent data drawn from the
unknown distribution.

• Sometimes we have hyperparameters (not learned from data) we need to tune, for
example, the step size in stochastic gradient descent.

• What’s the problem of using the test set to tune hyperparameters?
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Generalization

training
data

classifier

test
data

training

testing

hyperparameter

Development
data
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Reusing test sets

Image credit: (Recht et al., 2019)
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Large hypothesis classes

• Compare

H1 = the set of two-layer neural networks with 512 hidden units (7)

H2 = the set of all two-layer neural networks (8)

• H1 has a finite VC dimension, while the VC dimension of H2 is infinite!

• It is much easier (and tempting) to reduce the training error by increasing the
hypothesis class.
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Overfitting
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Overfitting

• Compare

w2 = [0.206,−0.317]

w9 = [−30.69, 93.27,−2.65,−3.29,−0.124, 0.0248, 0.0017, 0.0000245,
−0.00000423,−0.0000000857]

• The learned weights are either too large or too small for degree 9.

• What if instead we optimize

min
w∈H

LS(w) +
λ

2
∥w∥22 (9)
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Regularization

λ = 0.002

22 / 26



Regularization

λ = 0.02
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Regularization

λ = 0.1
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Regularization

λ = 0.2
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L2 Regularization

• The term λ
2∥w∥22 is called an L2 regularizer.

• It is also known as weight decay.

• The expression

LS(w) +
λ

2
∥w∥22 (10)

is the Lagrangian of

min
w

LS(w) (11)

s.t. ∥w∥2 ≤ B (12)
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L2 Regularization

• The L2 regularizer has an effect of controlling the capacity of the hypothesis class.

• Compare

H = {x 7→ w⊤x : w ∈ Rd} (13)

H = {x 7→ w⊤x : ∥w∥2 ≤ B} (14)
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Generalization bound for bounded linear classifier

• With probability 1− δ, for all h ∈ H,

LD(h) ≤ LS(h) +

√
r2B2

n
+ 3

√
log(2/δ)

2n
, (15)

where ∥x∥2 ≤ r for any x ∈ S and H = {x 7→ w⊤x : ∥w∥2 ≤ B}.
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