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L, Regularization

® The term %HWH% is called an Ly regularizer.
® |t is also known as weight decay.

® The expression

Ls(w) + 5 lw3 1)
is the Lagrangian of

min  Ls(w) (2)

st. w2 <B 3)
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Generalization bound for bounded linear classifier

e With probability 1 — 9, for all h € H,

r2B2 43 log(2/6)

Lp(h) < Ls(h
p(h) < Ls(h) + - THE

where ||x||2 < r forany x € Sand H = {x+— w'x: |w|]» < B}.
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Stability

® A learning algorithm is stable if the learned program does not change much in
performance when we change the data set slightly.

® The slight change in data set is by swapping out a data point.

5:{(Xlayl)""7(Xiayi)""v(xn7yn)} (5)
S'={0ay),- o (XY (xn )} (6)

® A learning algorithm is stable is A(S) and A(S') is “similar,” or
UAS)(x),y) = UA(S)(x), ) (7)

is small.l

'Recall that Ls(h) = 237 £(h(x), i)
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Stability

® Stable learning algorithms don’t overfit.

Es~pr[Lp(A(S)) — Ls(A(S))] = E ) [C(A(S) (i), yi) — L(A(S) (i), )] (8)

(oy)~D
® Proof
ES[LD(A(S))] - ES[E(X,y)ND[Z(A(S)(XL y)]] - ES[E(X,y)ND[E(A(Si)(XiL yl)]]
(9)
Es[Ls(A(S))] = Es[Eiwu@m)[L(A(S) (%), yi)l] (10)
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Stability

® If / is convex and p-Lipschitz? and A(S) = argminpe fyosw T [Ls(w) + M|wl|3],
then

IA(S") ~ AS)ll2 < 22. (11)
® |n the end, we have
2p?
Es.pr [Ln(A(S)) — Ls(A(S))] < 2= (12)

2A function f is p-Lipschitz if |f(x) — f(y)| < pl|x — y||2 for any x and y.
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Stability

® Minimizing L, regularized convex and Lipschitz functions is a stable learning
algorithm.

® Stable learning algorithms don’t overfit.
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Computational and statistical thinking

Computational Statistical
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Computational and statistical thinking

Computational Statistical

Runtime Samples
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Computational and statistical thinking

Computational Statistical
Runtime Samples
How many steps do we need? How many samples do we need?
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Computational and statistical thinking

Computational Statistical
Runtime Samples
How many steps do we need? How many samples do we need?
Polynomial number of steps Polynomial number of samples
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VC dimension of a sine function
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Universal approximation

® For every ¢ > 0, given any Lipschitz function f : [~1,1]¢ — [~1, 1], there is a
network g such that |g(x) — f(x)| < e for any x.

® The number of nodes needed to achieve this is O(29).
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Universal approximation

f(x)
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Universal approximation
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Universal approximation
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Can we approximate a sine function?
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Universal approximation

Polynomials are universal approximators.
Decision trees are universal approximators.
Gaussian mixture models are universal approximators.

Universal approximation does not explain why neural networks are so “special.”
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Depth separation

® There exists functions which can be approximated with small depth 3 networks,
but cannot be approximated with depth 2 networks without using O(29) nodes.

® Functions to show these results tend to oscillate a lot.

® Some believe the results are pathological and do not happen in practice.
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Universal approximation

® What can be implemented with polynomial number of of nodes?

® Any Turing machine that runs in T operations can be implemented with a neural
network of depth O(T) with a total O(T?) nodes.

® Recall that VC dimension of neural networks is O(|E|log |E|), where E is the
number of edges in the network.
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Hardness of optimizing neural networks
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Hardness of optimizing neural networks

® Training a 2-layer 3-node neural network is NP-complete.
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Hardness of optimizing neural networks

® Training a 2-layer 3-node neural network is NP-complete.
® The proof converts instances of an NP-complete problem into data points.

® |f we can minimize the loss of the training set, we solve the NP-complete problem.
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Hardness of optimizing neural networks

Training a 2-layer 3-node neural network is NP-complete.

The proof converts instances of an NP-complete problem into data points.

If we can minimize the loss of the training set, we solve the NP-complete problem.

Maybe we don't need to solve this exactly?
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Hardness of optimizing neural networks

® Approximating ERM is NP hard.
® The loss is not necessarily convex.

® ERM is hard for neural networks.
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Optimizing neural networks on random labels
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Image credit: (Zhang et al., 2017)
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MSE

Overparameterization
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Image credit: (Livni et al., 2014)
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Overparameterization

e QOverparameterization means using a lot more nodes than the number of points.

e Qverparameterization helps optimization.
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Overparameterization

Overparameterization means using a lot more nodes than the number of points.

Overparameterization helps optimization.
Wouldn't the model just memorize the training set?

Wouldn't the hypothesis class be too large to have good generalization error?
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Overparameterization
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Image credit: (Rosset, 2020)
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Overparameterization

MNIST

= Training
—o— Test (at convergence)
——Test (early stopping)
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Image credit: (Neyshabur et al., 2014)
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Interpolation

® Fitting a data set to training error zero is called interpolation.

® Why doesn't interpolation overfit?
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Interpolation
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Image credit: (Belkin et al., 2019)
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Interpolation
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Image credit: (Belkin et al., 2019)
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Zero-one loss (%)

Squared loss

Interpolation
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Image credit: (Belkin et al., 2019)
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Overfitting

Benign Tempered Catastrophic

® trainset
== true f*

£

= predicted f

Image credit: (Mallinar et al., 2022)

28/31



Sharp and flat minima

Image credit: (Foret et al., 2021)
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The grand goal

® Coming back to regularized ERM, it considers both the training error and the
capacity during optimization.

. A
min  Ls(w) + 5HWH§ (13)

® |f we know something that controls the capacity, we should optimize it.
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In practice

Always start with the training error.
Always start with ERM.
Why is the training error not close to zero?

Regularize
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