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L2 Regularization

• The term λ
2∥w∥22 is called an L2 regularizer.

• It is also known as weight decay.

• The expression

LS(w) +
λ

2
∥w∥22 (1)

is the Lagrangian of

min
w

LS(w) (2)

s.t. ∥w∥2 ≤ B (3)
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Generalization bound for bounded linear classifier

• With probability 1− δ, for all h ∈ H,

LD(h) ≤ LS(h) +

√
r2B2

n
+ 3

√
log(2/δ)

2n
, (4)

where ∥x∥2 ≤ r for any x ∈ S and H = {x 7→ w⊤x : ∥w∥2 ≤ B}.
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Stability

• A learning algorithm is stable if the learned program does not change much in
performance when we change the data set slightly.

• The slight change in data set is by swapping out a data point.

S = {(x1, y1), . . . , (xi , yi ), . . . , (xn, yn)} (5)

S i = {(x1, y1), . . . , (x ′, y ′), . . . , (xn, yn)} (6)

• A learning algorithm is stable is A(S) and A(S i ) is “similar,” or

ℓ(A(S)(x), y)− ℓ(A(S i )(x), y) (7)

is small.1

1Recall that LS(h) =
1
n

∑n
i=1 ℓ(h(xi ), yi ).
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Stability

• Stable learning algorithms don’t overfit.

ES∼Dn [LD(A(S))− LS(A(S))] = E i∼U(n)
S∼Dn

(x ,y)∼D

[ℓ(A(S i )(xi ), yi )− ℓ(A(S)(xi ), yi )] (8)

• Proof

ES [LD(A(S))] = ES [E(x ,y)∼D[ℓ(A(S)(x), y)]] = ES [E(x ,y)∼D[ℓ(A(S
i )(xi ), yi )]]

(9)

ES [LS(A(S))] = ES [Ei∼U(n)[ℓ(A(S)(xi ), yi )]] (10)
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Stability

• If ℓ is convex and ρ-Lipschitz2 and A(S) = argminh∈{w :x 7→w⊤x}[LS(w) + λ∥w∥22],
then

∥A(S i )− A(S)∥2 ≤
2ρ

λn
. (11)

• In the end, we have

ES∼Dn [LD(A(S))− LS(A(S))] ≤
2ρ2

λn
. (12)

2A function f is ρ-Lipschitz if |f (x)− f (y)| ≤ ρ∥x − y∥2 for any x and y .
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Stability

• Minimizing L2 regularized convex and Lipschitz functions is a stable learning
algorithm.

• Stable learning algorithms don’t overfit.
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Computational and statistical thinking

Computational Statistical

Runtime Samples

How many steps do we need? How many samples do we need?

Polynomial number of steps Polynomial number of samples
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VC dimension of a sine function
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Universal approximation

• For every ϵ > 0, given any Lipschitz function f : [−1, 1]d → [−1, 1], there is a
network g such that |g(x)− f (x)| ≤ ϵ for any x .

• The number of nodes needed to achieve this is O(2d).
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Universal approximation

f (x)

f (x) + ϵ

f (x)− ϵ

g(x)
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Can we approximate a sine function?
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Universal approximation

• Polynomials are universal approximators.

• Decision trees are universal approximators.

• Gaussian mixture models are universal approximators.

• Universal approximation does not explain why neural networks are so “special.”
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Depth separation

• There exists functions which can be approximated with small depth 3 networks,
but cannot be approximated with depth 2 networks without using O(2d) nodes.

• Functions to show these results tend to oscillate a lot.

• Some believe the results are pathological and do not happen in practice.
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Universal approximation

• What can be implemented with polynomial number of of nodes?

• Any Turing machine that runs in T operations can be implemented with a neural
network of depth O(T ) with a total O(T 2) nodes.

• Recall that VC dimension of neural networks is O(|E | log |E |), where E is the
number of edges in the network.

15 / 31



Hardness of optimizing neural networks

• Training a 2-layer 3-node neural network is NP-complete.

• The proof converts instances of an NP-complete problem into data points.

• If we can minimize the loss of the training set, we solve the NP-complete problem.

• Maybe we don’t need to solve this exactly?
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Hardness of optimizing neural networks

• Approximating ERM is NP hard.

• The loss is not necessarily convex.

• ERM is hard for neural networks.
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Optimizing neural networks on random labels

Image credit: (Zhang et al., 2017)
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Overparameterization

Image credit: (Livni et al., 2014)
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Overparameterization

• Overparameterization means using a lot more nodes than the number of points.

• Overparameterization helps optimization.

• Wouldn’t the model just memorize the training set?

• Wouldn’t the hypothesis class be too large to have good generalization error?
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Overparameterization

Image credit: (Rosset, 2020)

21 / 31



Overparameterization

Image credit: (Neyshabur et al., 2014)
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Interpolation

• Fitting a data set to training error zero is called interpolation.

• Why doesn’t interpolation overfit?
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Interpolation
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Interpolation

Image credit: (Belkin et al., 2019)
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Interpolation

Image credit: (Belkin et al., 2019)
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Interpolation

Image credit: (Belkin et al., 2019)
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Overfitting

Image credit: (Mallinar et al., 2022)

28 / 31



Sharp and flat minima

Image credit: (Foret et al., 2021)
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The grand goal

• Coming back to regularized ERM, it considers both the training error and the
capacity during optimization.

min
w

LS(w) +
λ

2
∥w∥22 (13)

• If we know something that controls the capacity, we should optimize it.
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In practice

• Always start with the training error.

• Always start with ERM.

• Why is the training error not close to zero?

• Regularize
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