# Machine Learning: Generalization 4

Hao Tang

March 24, 2025

# L<sub>2</sub> Regularization

- The term  $\frac{\lambda}{2} \|w\|_2^2$  is called an  $L_2$  regularizer.
- It is also known as weight decay.
- The expression

$$L_{\mathcal{S}}(w) + \frac{\lambda}{2} \|w\|_2^2 \tag{1}$$

is the Lagrangian of

$$\min_{w} L_{S}(w)$$
(2)  
s.t.  $||w||_{2} \leq B$ (3)

#### Generalization bound for bounded linear classifier

• With probability  $1 - \delta$ , for all  $h \in \mathcal{H}$ ,

$$L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + \sqrt{\frac{r^2 B^2}{n}} + 3\sqrt{\frac{\log(2/\delta)}{2n}},$$
  
where  $\|x\|_2 \leq r$  for any  $x \in S$  and  $\mathcal{H} = \{x \mapsto w^\top x : \|w\|_2 \leq B\}.$ 

3/31

(4)

- A learning algorithm is **stable** if the learned program does not change much in performance when we change the data set slightly.
- The slight change in data set is by swapping out a data point.

$$S = \{(x_1, y_1), \dots, (x_i, y_i), \dots, (x_n, y_n)\}$$
(5)

$$S^{i} = \{(x_{1}, y_{1}), \dots, (x', y'), \dots, (x_{n}, y_{n})\}$$
 (6)

• A learning algorithm is stable is A(S) and  $A(S^{i})$  is "similar," or

$$\ell(A(S)(x), y) - \ell(A(S^{i})(x), y)$$
(7)

#### is small.<sup>1</sup>

<sup>1</sup>Recall that  $L_S(h) = \frac{1}{n} \sum_{i=1}^n \ell(h(x_i), y_i).$ 

• Stable learning algorithms don't overfit.

 $\mathbb{E}_{S \sim \mathcal{D}^n}[L_{\mathcal{D}}(\mathcal{A}(S)) - L_S(\mathcal{A}(S))] = \mathbb{E}_{\substack{i \sim U(n) \\ S \sim \mathcal{D}^n \\ (x,y) \sim \mathcal{D}}} [\ell(\mathcal{A}(S^i)(x_i), y_i) - \ell(\mathcal{A}(S)(x_i), y_i)]$ (8)

• Proof

 $\mathbb{E}_{\mathcal{S}}[\mathcal{L}_{\mathcal{D}}(\mathcal{A}(\mathcal{S}))] = \mathbb{E}_{\mathcal{S}}[\mathbb{E}_{(x,y)\sim\mathcal{D}}[\ell(\mathcal{A}(\mathcal{S})(x), y)]] = \mathbb{E}_{\mathcal{S}}[\mathbb{E}_{(x,y)\sim\mathcal{D}}[\ell(\mathcal{A}(\mathcal{S}^{i})(x_{i}), y_{i})]]$ (9)

$$\mathbb{E}_{S}[L_{S}(A(S))] = \mathbb{E}_{S}[\mathbb{E}_{i \sim U(n)}[\ell(A(S)(x_{i}), y_{i})]]$$
(10)

• If  $\ell$  is convex and  $\rho$ -Lipschitz<sup>2</sup> and  $A(S) = \operatorname{argmin}_{h \in \{w: x \mapsto w^{\top}x\}} [L_S(w) + \lambda ||w||_2^2]$ , then

$$\|A(S^{i}) - A(S)\|_{2} \leq \frac{2\rho}{\lambda n}.$$
(11)

• In the end, we have

$$\mathbb{E}_{\mathcal{S}\sim\mathcal{D}^n}\left[L_\mathcal{D}(\mathcal{A}(\mathcal{S}))-L_\mathcal{S}(\mathcal{A}(\mathcal{S}))
ight]\leq rac{2
ho^2}{\lambda n}.$$

<sup>2</sup>A function f is  $\rho$ -Lipschitz if  $|f(x) - f(y)| \le \rho ||x - y||_2$  for any x and y.

(12)

- Minimizing L<sub>2</sub> regularized convex and Lipschitz functions is a stable learning algorithm.
- Stable learning algorithms don't overfit.

Computational

Statistical

Computational

Statistical

Runtime

Samples

Computational

Statistical

Runtime

Samples

How many steps do we need?

How many samples do we need?

#### Computational

Statistical

Runtime

Samples

How many steps do we need?

Polynomial number of steps

How many samples do we need?

Polynomial number of samples

#### VC dimension of a sine function



- For every ε > 0, given any Lipschitz function f : [-1, 1]<sup>d</sup> → [-1, 1], there is a network g such that |g(x) f(x)| ≤ ε for any x.
- The number of nodes needed to achieve this is  $O(2^d)$ .







#### Can we approximate a sine function?



- Polynomials are universal approximators.
- Decision trees are universal approximators.
- Gaussian mixture models are universal approximators.
- Universal approximation does not explain why neural networks are so "special."

# **Depth separation**

- There exists functions which can be approximated with small depth 3 networks, but cannot be approximated with depth 2 networks without using  $O(2^d)$  nodes.
- Functions to show these results tend to oscillate a lot.
- Some believe the results are pathological and do not happen in practice.

- What can be implemented with polynomial number of of nodes?
- Any Turing machine that runs in T operations can be implemented with a neural network of depth O(T) with a total  $O(T^2)$  nodes.
- Recall that VC dimension of neural networks is  $O(|E| \log |E|)$ , where E is the number of edges in the network.

• Training a 2-layer 3-node neural network is NP-complete.

- Training a 2-layer 3-node neural network is NP-complete.
- The proof converts instances of an NP-complete problem into data points.
- If we can minimize the loss of the training set, we solve the NP-complete problem.

- Training a 2-layer 3-node neural network is NP-complete.
- The proof converts instances of an NP-complete problem into data points.
- If we can minimize the loss of the training set, we solve the NP-complete problem.
- Maybe we don't need to solve this exactly?

- Approximating ERM is NP hard.
- The loss is not necessarily convex.
- ERM is hard for neural networks.

## Optimizing neural networks on random labels





- Overparameterization means using a lot more nodes than the number of points.
- Overparameterization helps optimization.

- Overparameterization means using a lot more nodes than the number of points.
- Overparameterization helps optimization.
- Wouldn't the model just memorize the training set?
- Wouldn't the hypothesis class be too large to have good generalization error?





Image credit: (Neyshabur et al., 2014)

- Fitting a data set to training error zero is called interpolation.
- Why doesn't interpolation overfit?









# Overfitting



Image credit: (Mallinar et al., 2022)

# Sharp and flat minima



Image credit: (Foret et al., 2021)

# The grand goal

• Coming back to regularized ERM, it considers both the training error and the capacity during optimization.

$$\min_{w} \quad L_{S}(w) + \frac{\lambda}{2} \|w\|_{2}^{2}$$
(13)

• If we know something that controls the capacity, we should optimize it.

# In practice

- Always start with the training error.
- Always start with ERM.
- Why is the training error not close to zero?
- Regularize