Machine Learning Gaussian Mixture Models

Kia Nazarpour

Context

- 1. Often times we need to analyse data for which we do not have their labels.
- 2. How can we find any structure in a collection of unlabelled data?
- 3. Clustering is an established category of methods for organising objects into groups whose members are similar in some way.

Context: *K*-means Solution

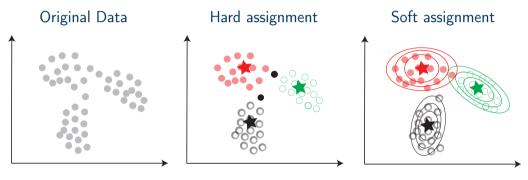
$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

$$\boldsymbol{\mu}_k = \frac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}$$

Context: K-means discussion

- 1. Too crude? Assumes that a cluster can be represented with a single point and a simple distance metric
- 2. A simple unsupervised method that enables clustering of data with no great computational complexity
- 3. Hard boundaries!
- 4. Q: How to generalise it to models that can cluster data of various types and shapes!

Context: Hard assignment vs. Soft assignment



Gaussian Mixture Model

Learning Outcomes

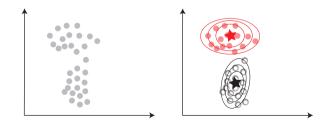
- 1. Understand the key motivations behind a Guassian Mixture Model (GMM).
- 2. Understand the formulation of a GMM and the need for the Expectation Maximisation (EM) solver.
- 3. Analyse the solution to a GMM.

References:

- 1. Bishop, *Pattern Recognition and Machine Learning*, Springer, 2008. (Section 9.1)
- 2. Rogers and Girolami, *A First Course in Machine Learning*, CRC Press, 2016. (Section 6.3)

Mixture Models

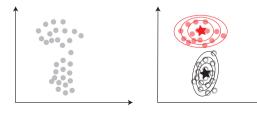
- 1. Models that can cluster data of various types and shapes!
- 2. Simple to compute
- 3. Clustering with statistical mixture models, similar to k-means, but offers richer representation of the data!



Mixture Models - A generative process

- 1. Let's assume we want to generate the below data with two Gaussians!
- 2. For data \mathbf{x}_n , Select one of the Gaussians (with probability π_k , assuming $\sum_k \pi_k = 1$). Set the parameter $z_{nk} = 1$
- 3. Sample data \mathbf{x}_n from this Gaussian

$$p(\mathbf{x}_n|z_{nk}=1,\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k) = \mathcal{N}(\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)$$



Mixture Models - A generative process

- 1. We described out data with a generative process
- 2. In a clustering context all data points with $z_{nk} = 1$ are in cluster k
- 3. But we need to learn/infer/calculate (μ_k, Σ_k) from the observed data

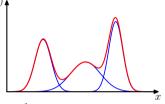
BUT this is a circular argument

- 1. Trivial to calculate the component parameters (μ_k, Σ_k) if we knew the assignment rule $z_{nk} = 1$
- 2. Trivial to work out the assignment rule $z_{nk} = 1$ if we knew the component parameters $(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$

Mixture of Gaussians

Complex probabilities can be approximated with a linear superposition of ${\cal K}$ Gaussian densities.

 $p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$



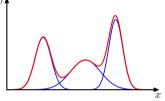
We define $\mathbf{z} = \{z_1, z_2, \cdots, z_k\}$ where $z_k \in \{0, 1\}$ and $\sum_k z_k = 1$.

We know that $p(\mathbf{x}, \mathbf{z}) = p(\mathbf{z})p(\mathbf{x}|\mathbf{z})$ and $p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z})p(\mathbf{x}|\mathbf{z})$.

Mixture of Gaussians

Complex probabilities can be approximated with a linear superposition of ${\cal K}$ Gaussian densities.

 $p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$



We define $\mathbf{z} = \{z_1, z_2, \cdots, z_k\}$ where $z_k \in \{0, 1\}$ and $\sum_k z_k = 1$.

We know that $p(\mathbf{x}, \mathbf{z}) = p(\mathbf{z})p(\mathbf{x}|\mathbf{z})$ and $p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z})p(\mathbf{x}|\mathbf{z})$.

- $p(z_k = 1) = \pi_k$: $0 \le \pi_k \le 1$ and $\sum_{k=1}^K \pi_k = 1$.
- $p(\mathbf{z}) = \prod_{k=1}^{K} \pi_k^{z_k}$
- $p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k}$

Mixture of Gaussians

Another key quantity is $p(\mathbf{z}|\mathbf{x})$

$$\gamma(z_k) \equiv p(z_k = 1 | \mathbf{x}) = \frac{p(z_k = 1)p(\mathbf{x} | z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(\mathbf{x} | z_j = 1)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

 $\gamma(z_k)$ is the *responsibility* that component k takes in explaining the observation x.

A Maximum Likelihood solution to GMM? Not ideal!

Suppose we observe $\mathbf{X}_{N \times D} = {\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N}$. Assuming that the data points are drawn independently, the likelihood function of all N data points is

$$p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{n=1}^{N} \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

and so the log-likelihood will be

$$L = \log p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \log \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

We can estimate π_k, μ_k , and Σ_k by differentiating L with respect to these variables and using gradient-based optimisation.

Expectation-Maximisation (EM) for GMMs

- The EM method can be used to overcome challenges of using Maximum Likelihood.
- EM derives a *lower bound* \mathcal{B} on the likelihood L, that is $\mathcal{B} \leq L$.
- Instead of maximising L directly, EM maximises $\mathcal B$
- Question: How to determine \mathcal{B} ? Using Jensen's inequality

 $\log \mathbf{E}_{p(z)} \{ f(z) \} \ge \mathbf{E}_{p(z)} \{ \log f(z) \}$

- The logarithm of the expected value of f(z) is always greater than or equal to the expected value of $\log f(z)$

EM - Derivation for GMMs

- Let's define γ_{nk} to be positive and satisfying $\sum_{k=1}^{K} \gamma_{nk} = 1$.
- γ_{nk} is some probability distribution over K components for the n-th data point.

$$\begin{split} \mathcal{L} &= \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \\ &= \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \frac{\gamma_{nk}}{\gamma_{nk}} \\ &= \sum_{n=1}^{N} \log \sum_{k=1}^{K} \gamma_{nk} \frac{\pi_{k} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\gamma_{nk}} \\ &= \sum_{n=1}^{N} \log \mathbf{E}_{\gamma_{nk}} \left\{ \frac{\pi_{k} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\gamma_{nk}} \right\} \end{split}$$

Apply Jensen's inequality

 $\log \mathbf{E}_{p(z)} \{ f(z) \} \ge \mathbf{E}_{p(z)} \{ \log f(z) \}$

$$L = \sum_{n=1}^{N} \log \mathbf{E}_{\gamma_{nk}} \left\{ \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\gamma_{nk}} \right\}$$
$$\geq \sum_{n=1}^{N} \mathbf{E}_{\gamma_{nk}} \left\{ \log \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\gamma_{nk}} \right\} = \mathcal{B}$$

Apply Jensen's inequality

 $\log \mathbf{E}_{p(z)} \{ f(z) \} \ge \mathbf{E}_{p(z)} \{ \log f(z) \}$

$$L = \sum_{n=1}^{N} \log \mathbf{E}_{\gamma_{nk}} \left\{ \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\gamma_{nk}} \right\}$$
$$\geq \sum_{n=1}^{N} \mathbf{E}_{\gamma_{nk}} \left\{ \log \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\gamma_{nk}} \right\} = \mathcal{B}$$

$$\mathcal{B} = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \log \pi_k + \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) - \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \log \gamma_{nk}.$$

EM - Derivation for GMMs

$$\mathcal{B} = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \log \pi_k + \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) - \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \log \gamma_{nk}.$$

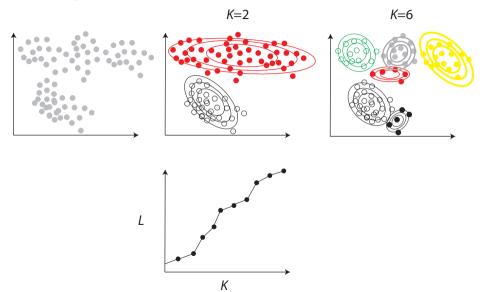
- EM is an iterative process, maximising the bound \mathcal{B} , until convergence.
- For each update, we take the partial derivative of the bound \mathcal{B} wrt parameters, set it to zero and solve.
- See Rogers and Girolami (2016) [pp.218-222] for full derivations

EM Solution for GMMs

E-step M-step $\pi_k = \frac{1}{N} \sum_{n=1}^N \gamma_{nk}$ $\boldsymbol{\mu}_k = \frac{\sum_{n=1}^N \gamma_{nk} \mathbf{x}_n}{\sum^N \gamma_{nk}}$ $\gamma_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_k | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$ $\boldsymbol{\Sigma}_{k} = \frac{\sum_{n=1}^{N} \gamma_{nk} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{T}}{\sum_{n=1}^{N} \gamma_{nk}}$

Some intution ...

Choosing the Number of components *K* **for GMMs**



GMM: Summary

- Hard boundaries are exchanged for flexible and probabilistic soft boundaries
- Immense flexibility: $p(\mathbf{x}_n | \cdots)$ can take the form of any probability density including Bernoulli distribution (binary data)
- The choice of K remains ad-hoc

Next lecture:

• Delving [a bit] deeper into the EM method