
Machine Learning
Neural Network 1

Hiroshi Shimodaira and Hao Tang

2025

Ver. 1.0

1 / 30

Topics - you should be able to explain after this week

• Perceptron

• Perceptron learning algorithm (perceptron error correction algorithm)

• Linearly separable vs linearly non-separable

• Logical operations with perceptron

• Multilayer perceptron (MLP)

• Activation functions

• Universal approximation theorem

2 / 30

Background of Perceptron

(https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg)

1940s Warren McCulloch and Walter Pitts : ’threshold logic’
Donald Hebb : ’Hebbian learning’

1957 Frank Rosenblatt : ’Perceptron’

3 / 30

https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg

Background of Perceptron

(https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg)

w2

w1

x
3

(a) function unit

w
yΣ

1940s Warren McCulloch and Walter Pitts : ’threshold logic’
Donald Hebb : ’Hebbian learning’

1957 Frank Rosenblatt : ’Perceptron’

3 / 30

https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg

Background of Perceptron

(https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg)

w2

w1

x
3

(a) function unit

w
yΣ

1940s Warren McCulloch and Walter Pitts : ’threshold logic’
Donald Hebb : ’Hebbian learning’

1957 Frank Rosenblatt : ’Perceptron’

3 / 30

https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg

Background of Perceptron

(https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg)

w2

w1

x
3

(a) function unit

w
yΣ

1940s Warren McCulloch and Walter Pitts : ’threshold logic’
Donald Hebb : ’Hebbian learning’

1957 Frank Rosenblatt : ’Perceptron’

3 / 30

https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg

Character recognition with Perceptron

(1,1)

i

j

(W,H)

W

H

Σ

y(x) = H(w⊤x + w0)

H(a) = 1(a ≥ 0) =

{
1, if a ≥ 0,
0, if a < 0

Heaviside step function

4 / 30

Decision boundary of linear discriminant (2D)

y(x) = w1x1 + w2x2 + w0 = 0 (x2=−
w1

w2
x1 −

w0

w2
, when w2 ̸= 0)

/w
/w

T

/w

2

2
2

1

2 1

1

w w

0

T

0

C

w

x wy()= =0x

w

=(,)

−w

1C

2

+w

−w

2x

x10

slope =

slope =

5 / 30

Decision boundary of linear discriminant (3D)

y(x) = w1x1 + w2x2 + w3x3 + w0 = 0

X 1

X 2

X 3

T

1 32
w=(w , w , w)

6 / 30

Decision boundary of linear discriminants

• Decision boundary:
y(x) = w⊤x + w0 = 0

Dimension Decision boundary

2 line w1x1 + w2x2 + w0 = 0

3 plane w1x1 + w2x2 + w3x3 + w0 = 0

d hyperplane (
∑d

i=1 wixi) + w0 = 0

NB: w is a normal vector to the hyperplane

7 / 30

Training of Perceptron

• A discriminant for a two-class problem:

y(x) = w⊤x + w0

8 / 30

Training of Perceptron

• A discriminant for a two-class problem:

y(x) = w⊤x + w0

1

2

1 2

T

X

()w ,w

X

8 / 30

Training of Perceptron

• A discriminant for a two-class problem:

y(x) = w⊤x + w0

(new)(new) T

1 2
w ,w()

T

2

1

1

2

X

X

()w ,w

8 / 30

Perceptron error correction algorithm

a(ẋ) = w⊤x + w0 = ẇ⊤ẋ

where ẇ = (w0,w⊤)⊤, ẋ = (1, x⊤)⊤

Let’s just use w and x to denote ẇ and ẋ from now on!

• Training set : D = {(x1, y1), . . . , (xN , yN)}, yi ∈ {0, 1} : target value or label
• Initialise w
• Modify w if xi was misclassified

w (new) ← w + η (yi − y(xi)) xi (0 < η < 1)
learning rateNB:

(w (new))⊤xi = w⊤xi + η (yi − y(xi)) ∥xi∥2

9 / 30

Perceptron error correction algorithm

a(ẋ) = w⊤x + w0 = ẇ⊤ẋ

where ẇ = (w0,w⊤)⊤, ẋ = (1, x⊤)⊤

Let’s just use w and x to denote ẇ and ẋ from now on!

y(x) = g(a(x)) = g(w⊤x)

• Training set : D = {(x1, y1), . . . , (xN , yN)}, yi ∈ {0, 1} : target value or label
• Initialise w
• Modify w if xi was misclassified

w (new) ← w + η (yi − y(xi)) xi (0 < η < 1)
learning rateNB:

(w (new))⊤xi = w⊤xi + η (yi − y(xi)) ∥xi∥2

9 / 30

Perceptron error correction algorithm

a(ẋ) = w⊤x + w0 = ẇ⊤ẋ

where ẇ = (w0,w⊤)⊤, ẋ = (1, x⊤)⊤

Let’s just use w and x to denote ẇ and ẋ from now on!

y(x) = g(a(x)) = g(w⊤x) where g(a) = 1(a ≥ 0) =

{
1, if a ≥ 0,
0, if a < 0

g(a): activation / transfer function. g(a) = H(a) for perceptron

• Training set : D = {(x1, y1), . . . , (xN , yN)}, yi ∈ {0, 1} : target value or label
• Initialise w
• Modify w if xi was misclassified

w (new) ← w + η (yi − y(xi)) xi (0 < η < 1)
learning rateNB:

(w (new))⊤xi = w⊤xi + η (yi − y(xi)) ∥xi∥2

9 / 30

Perceptron error correction algorithm

a(ẋ) = w⊤x + w0 = ẇ⊤ẋ

where ẇ = (w0,w⊤)⊤, ẋ = (1, x⊤)⊤

Let’s just use w and x to denote ẇ and ẋ from now on!

y(x) = g(a(x)) = g(w⊤x) where g(a) = 1(a ≥ 0) =

{
1, if a ≥ 0,
0, if a < 0

g(a): activation / transfer function. g(a) = H(a) for perceptron

• Training set : D = {(x1, y1), . . . , (xN , yN)}, yi ∈ {0, 1} : target value or label
• Initialise w

• Modify w if xi was misclassified

w (new) ← w + η (yi − y(xi)) xi (0 < η < 1)
learning rateNB:

(w (new))⊤xi = w⊤xi + η (yi − y(xi)) ∥xi∥2

9 / 30

Perceptron error correction algorithm

a(ẋ) = w⊤x + w0 = ẇ⊤ẋ

where ẇ = (w0,w⊤)⊤, ẋ = (1, x⊤)⊤

Let’s just use w and x to denote ẇ and ẋ from now on!

y(x) = g(a(x)) = g(w⊤x) where g(a) = 1(a ≥ 0) =

{
1, if a ≥ 0,
0, if a < 0

g(a): activation / transfer function. g(a) = H(a) for perceptron

• Training set : D = {(x1, y1), . . . , (xN , yN)}, yi ∈ {0, 1} : target value or label
• Initialise w
• Modify w if xi was misclassified

w (new) ← w + η (yi − y(xi)) xi (0 < η < 1)
learning rate

NB:
(w (new))⊤xi = w⊤xi + η (yi − y(xi)) ∥xi∥2

9 / 30

Perceptron error correction algorithm

a(ẋ) = w⊤x + w0 = ẇ⊤ẋ

where ẇ = (w0,w⊤)⊤, ẋ = (1, x⊤)⊤

Let’s just use w and x to denote ẇ and ẋ from now on!

y(x) = g(a(x)) = g(w⊤x) where g(a) = 1(a ≥ 0) =

{
1, if a ≥ 0,
0, if a < 0

g(a): activation / transfer function. g(a) = H(a) for perceptron

• Training set : D = {(x1, y1), . . . , (xN , yN)}, yi ∈ {0, 1} : target value or label
• Initialise w
• Modify w if xi was misclassified

w (new) ← w + η (yi − y(xi)) xi (0 < η < 1)
learning rateNB:

(w (new))⊤xi = w⊤xi + η (yi − y(xi)) ∥xi∥2

9 / 30

Geometry of Perceptron error correction

y(xi) = g(w⊤xi)

w (new) ← w + η (yi − y(xi)) xi (0 < η < 1)

yi−y(xi)
y(xi)

0 1

yi
0 0 -1
1 1 0

w⊤x = ∥w∥∥x∥ cos θ

T

1

X 2

C1

w
 x

C0

X

w

x

10 / 30

Geometry of Perceptron error correction (cont.)

y(xi) = g(w⊤xi)

w (new) ← w + η (yi − y(xi)) xi (0 < η < 1)

yi−y(xi)
y(xi)

0 1

yi
0 0 -1
1 1 0

w⊤x = ∥w∥∥x∥ cos θ

T

1

X 2

C1

C0

w
 x X

w

x

11 / 30

Geometry of Perceptron error correction (cont.)

y(xi) = g(w⊤xi)

w (new) ← w + η (yi − y(xi)) xi (0 < η < 1)

yi−y(xi)
y(xi)

0 1

yi
0 0 -1
1 1 0

w⊤x = ∥w∥∥x∥ cos θ

(new)

0

x

C

w

w

1

X

X

2
C1

η

η

x

x

12 / 30

The Perceptron learning algorithm

Incremental (online) Perceptron algorithm:

for i = 1, . . . ,N
w ← w + η (yi − y(xi)) xi

Batch Perceptron algorithm:

vsum = 0
for i = 1, . . . ,N

vsum = vsum + (yi − y(xi)) xi
w ← w + η vsum

What about convergence?
The Perceptron learning algorithm terminates if training samples are
linearly separable.

13 / 30

The Perceptron learning algorithm

Incremental (online) Perceptron algorithm:

for i = 1, . . . ,N
w ← w + η (yi − y(xi)) xi

Batch Perceptron algorithm:

vsum = 0
for i = 1, . . . ,N

vsum = vsum + (yi − y(xi)) xi
w ← w + η vsum

What about convergence?
The Perceptron learning algorithm terminates if training samples are
linearly separable.

13 / 30

The Perceptron learning algorithm

Incremental (online) Perceptron algorithm:

for i = 1, . . . ,N
w ← w + η (yi − y(xi)) xi

Batch Perceptron algorithm:

vsum = 0
for i = 1, . . . ,N

vsum = vsum + (yi − y(xi)) xi
w ← w + η vsum

What about convergence?
The Perceptron learning algorithm terminates if training samples are
linearly separable.

13 / 30

Linearly separable vs linearly non-separable

Linearly separable Linearly non−separable
(b)(a−1) (a−2)

14 / 30

Perceptron structures and decision boundaries

y(x) = g(a(x))

= g(w⊤x)

w = (w0,w1, . . . ,wd)
⊤

x = (1, x1, . . . , xd)
⊤

where g(a) =

{
1, if a ≥ 0,
0, if a < 0

cf. sigmoid function

0

2

1

1

2

0

xx x

www

Σ

15 / 30

Perceptron structures and decision boundaries

y(x) = g(a(x))

= g(w⊤x)

w = (w0,w1, . . . ,wd)
⊤

x = (1, x1, . . . , xd)
⊤

where g(a) =

{
1, if a ≥ 0,
0, if a < 0

cf. sigmoid function

0

2

1

1

2

0

xx x

www

Σ

2

1

−1

X

X

15 / 30

Perceptron structures and decision boundaries

y(x) = g(a(x))

= g(w⊤x)

w = (w0,w1, . . . ,wd)
⊤

x = (1, x1, . . . , xd)
⊤

where g(a) =

{
1, if a ≥ 0,
0, if a < 0

cf. sigmoid function

0

2

1

1

2

0

xx x

www

Σ

2

1

−1

X

X

x2 > x1 − 1

a(x) = 1− x1 + x2
= w0+w1x1+w2x2

w0=1,w1=−1,w2=1

15 / 30

Perceptron structures and decision boundaries

y(x) = g(a(x))

= g(w⊤x)

w = (w0,w1, . . . ,wd)
⊤

x = (1, x1, . . . , xd)
⊤

where g(a) =

{
1, if a ≥ 0,
0, if a < 0

cf. sigmoid function

0

2

1

1

2

0

xx x

www

Σ

2

1

−1

X

X

x2 > x1 − 1

a(x) = 1− x1 + x2
= w0+w1x1+w2x2

w0=1,w1=−1,w2=1

NB: A one node/neuron constructs a decision boundary, which splits the input space
into two regions

15 / 30

Perceptron as a logical function

NOT

x1 y

0 1
1 0

OR

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 1

NAND

x1 x2 y

0 0 1
0 1 1
1 0 1
1 1 0

XOR

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 0

16 / 30

Perceptron as a logical function

NOT

x1 y

0 1
1 0

OR

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 1

NAND

x1 x2 y

0 0 1
0 1 1
1 0 1
1 1 0

XOR

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 0

1

2

X

X

10

1

16 / 30

Perceptron as a logical function

NOT

x1 y

0 1
1 0

OR

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 1

NAND

x1 x2 y

0 0 1
0 1 1
1 0 1
1 1 0

XOR

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 0

1

2

X

X

10

1

1

2

X

X

1

10

16 / 30

Perceptron as a logical function

NOT

x1 y

0 1
1 0

OR

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 1

NAND

x1 x2 y

0 0 1
0 1 1
1 0 1
1 1 0

XOR

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 0

1

2

X

X

10

1

1

2

X

X

1

10

1

2

1

X

1

0

X

16 / 30

Perceptron as a logical function

NOT

x1 y

0 1
1 0

OR

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 1

NAND

x1 x2 y

0 0 1
0 1 1
1 0 1
1 1 0

XOR

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 0

1

2

X

X

10

1

1

2

X

X

1

10

1

2

1

X

1

0

X

Question: find the weights for each function
16 / 30

A perceptron for XOR

1

1

0

0

2

2

C

0 1

1

2

C

x

x

C

⇐
=1

=0

1

1

1

2

2

y

0 1

1

2

x

x

y

AND

=0

=1

1

2

2

2

2

y

0 1

1

2

x

x

y

2

1 2

1

z

x1

1

x

yy

1 2

3M

MM

17 / 30

Perceptron structures and decision boundaries (cont.)

01 10 22x x xxx x

Σ

Σ

Σ

18 / 30

Perceptron structures and decision boundaries (cont.)

01 10 22x x xxx x

Σ

Σ

Σ

⇒

10 2xx x

Σ

Σ

Σ

18 / 30

Perceptron structures and decision boundaries (cont.)

10 2xx x

Σ

Σ

Σ

19 / 30

Perceptron structures and decision boundaries (cont.)

10 2xx x

Σ

Σ

Σ

2

1

X

X

19 / 30

Perceptron structures and decision boundaries (cont.)

10 2xx x

Σ

Σ

ΣΣ Σ

20 / 30

Perceptron structures and decision boundaries (cont.)

10 2xx x

Σ

Σ

ΣΣ Σ

1

2

X

X

20 / 30

Perceptron structures and decision boundaries (cont.)

0 21 xxx

ΣΣ

ΣΣΣ

Σ

Σ

Σ

21 / 30

Perceptron structures and decision boundaries (cont.)

0 21 xxx

ΣΣ

ΣΣΣ

Σ

Σ

Σ

1

2X

X

21 / 30

Single-layer network with multiple output nodes

KD

k0 kD

10

w

w

w

w

i

k K1

0 D1 x

yy

xxx

y

gg g

y1(x) = g(w⊤
1 x+ w10)

...
yK (x) = g(w⊤

K x+ wK0) y1
...
yK

 = g

w10 w11 . . .w1d

...
. . .

...
wK0wK1 . . .wKd

1
x1
...
xd

y = g(Wẋ)

• K output nodes: y1, . . . , yK . NB: we sometimes use y to denote ŷ for simplicity’s sake.

• For xn = (xn0, . . . , xnD)
⊤,

ŷnk = g
(d∑

d=0

wkd xnd

)
= g(ank) , ank =

d∑
d=0

wkd xnd

22 / 30

Single-layer network with multiple output nodes

k0 kD

KD10

ww

ww

i

k K1

0 D1 x

yy

xxx

y

gg g

y1(x) = g(w⊤
1 x+ w10)

...
yK (x) = g(w⊤

K x+ wK0) y1
...
yK

 = g

w10 w11 . . .w1d

...
. . .

...
wK0wK1 . . .wKd

1
x1
...
xd

y = g(Wẋ)

• K output nodes: y1, . . . , yK . NB: we sometimes use y to denote ŷ for simplicity’s sake.

• For xn = (xn0, . . . , xnD)
⊤,

ŷnk = g
(d∑

d=0

wkd xnd

)
= g(ank) , ank =

d∑
d=0

wkd xnd

22 / 30

Limitations of Perceptron

• Single-layer perceptron is just a linear classifier
(Marvin Minsky and Seymour Papert, 1969)

• Training does not stop if data are linearly non-separable

• Weights w are adjusted for misclassified data only (correctly classified data are
not considered at all)

• Multi-layer perceptron can form complex decision boundaries (piecewise-linear),
but the Perceptron training algorithm is not applicable.

23 / 30

Limitations of Perceptron

• Single-layer perceptron is just a linear classifier
(Marvin Minsky and Seymour Papert, 1969)

• Training does not stop if data are linearly non-separable

• Weights w are adjusted for misclassified data only (correctly classified data are
not considered at all)

• Multi-layer perceptron can form complex decision boundaries (piecewise-linear),
but the Perceptron training algorithm is not applicable.

23 / 30

Limitations of Perceptron

• Single-layer perceptron is just a linear classifier
(Marvin Minsky and Seymour Papert, 1969)

• Training does not stop if data are linearly non-separable

• Weights w are adjusted for misclassified data only (correctly classified data are
not considered at all)

• Multi-layer perceptron can form complex decision boundaries (piecewise-linear),
but the Perceptron training algorithm is not applicable.

23 / 30

Limitations of Perceptron

• Single-layer perceptron is just a linear classifier
(Marvin Minsky and Seymour Papert, 1969)

• Training does not stop if data are linearly non-separable

• Weights w are adjusted for misclassified data only (correctly classified data are
not considered at all)

• Multi-layer perceptron can form complex decision boundaries (piecewise-linear),
but the Perceptron training algorithm is not applicable.

23 / 30

How can we resolve the problem of training?

• Use the least squares error criterion for training

E2(w) =
N∑

n=1

(ŷn − yn)
2

• Replace g() with a differentiable function

What about removing g() in the hidden layers?

ŷn = g(W (2)g(W (1)xn)) ⇒ ŷn = g(W (2)W (1)xn) = g(W xn)

Question: Show networks with linear hidden nodes reduce to single-layer networks

24 / 30

How can we resolve the problem of training?

• Use the least squares error criterion for training

E2(w) =
N∑

n=1

(ŷn − yn)
2

• Replace g() with a differentiable function

What about removing g() in the hidden layers?

ŷn = g(W (2)g(W (1)xn)) ⇒ ŷn = g(W (2)W (1)xn) = g(W xn)

Question: Show networks with linear hidden nodes reduce to single-layer networks

24 / 30

How can we resolve the problem of training?

• Use the least squares error criterion for training

E2(w) =
N∑

n=1

(ŷn − yn)
2

• Replace g() with a differentiable function

What about removing g() in the hidden layers?

ŷn = g(W (2)g(W (1)xn)) ⇒ ŷn = g(W (2)W (1)xn) = g(W xn)

Question: Show networks with linear hidden nodes reduce to single-layer networks

24 / 30

How can we resolve the problem of training?

• Use the least squares error criterion for training

E2(w) =
N∑

n=1

(ŷn − yn)
2

• Replace g() with a differentiable function

What about removing g() in the hidden layers?

ŷn = g(W (2)g(W (1)xn)) ⇒ ŷn = g(W (2)W (1)xn) = g(W xn)

Question: Show networks with linear hidden nodes reduce to single-layer networks

24 / 30

How can we resolve the problem of training?

• Use the least squares error criterion for training

E2(w) =
N∑

n=1

(ŷn − yn)
2

• Replace g() with a differentiable function

What about removing g() in the hidden layers?

ŷn = g(W (2)g(W (1)xn)) ⇒ ŷn = g(W (2)W (1)xn) = g(W xn)

10 2xx x

Σ

Σ

Σ

Question: Show networks with linear hidden nodes reduce to single-layer networks

24 / 30

How can we resolve the problem of training?

• Use the least squares error criterion for training

E2(w) =
N∑

n=1

(ŷn − yn)
2

• Replace g() with a differentiable function

What about removing g() in the hidden layers?

ŷn = g(W (2)g(W (1)xn)) ⇒ ŷn = g(W (2)W (1)xn) = g(W xn)

10 2xx x

Σ

Σ

Σ

⇒

0 21 xxx

Σ

ΣΣ

Question: Show networks with linear hidden nodes reduce to single-layer networks

24 / 30

How can we resolve the problem of training?

• Use the least squares error criterion for training

E2(w) =
N∑

n=1

(ŷn − yn)
2

• Replace g() with a differentiable function

What about removing g() in the hidden layers?

ŷn = g(W (2)g(W (1)xn)) ⇒ ŷn = g(W (2)W (1)xn) = g(W xn)

10 2xx x

Σ

Σ

Σ

⇒

0 21 xxx

Σ

ΣΣ
=

10 2xx x

Σ

Question: Show networks with linear hidden nodes reduce to single-layer networks

24 / 30

How can we resolve the problem of training?

• Use the least squares error criterion for training

E2(w) =
N∑

n=1

(ŷn − yn)
2

• Replace g() with a differentiable function

What about removing g() in the hidden layers?

ŷn = g(W (2)g(W (1)xn)) ⇒ ŷn = g(W (2)W (1)xn) = g(W xn)

10 2xx x

Σ

Σ

Σ

⇒

0 21 xxx

Σ

ΣΣ
=

10 2xx x

Σ

Question: Show networks with linear hidden nodes reduce to single-layer networks
24 / 30

How can we resolve the problem of training?(cont.)

• Replace g() with a differentiable non-linear function

e.g., Logistic sigmoid function:

g(a) =
1

1 + e−a
=

1

1 + exp(−a)

Mapping: (−∞,+∞) → (0, 1), Use a threshold=0.5 for binary classification

d

da
g(a) = g ′(a) = g(a) (1− g(a))

25 / 30

How can we resolve the problem of training?(cont.)

• Replace g() with a differentiable non-linear function
e.g., Logistic sigmoid function:

g(a) =
1

1 + e−a
=

1

1 + exp(−a)

Mapping: (−∞,+∞) → (0, 1), Use a threshold=0.5 for binary classification

d

da
g(a) = g ′(a) = g(a) (1− g(a))

25 / 30

How can we resolve the problem of training?(cont.)

• Replace g() with a differentiable non-linear function
e.g., Logistic sigmoid function:

g(a) =
1

1 + e−a
=

1

1 + exp(−a)

-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

a

g
(a

)
=

 1
 /
 (

1
+

e
x
p
(-

a
))

Mapping: (−∞,+∞) → (0, 1), Use a threshold=0.5 for binary classification

d

da
g(a) = g ′(a) = g(a) (1− g(a))

25 / 30

How can we resolve the problem of training?(cont.)

• Replace g() with a differentiable non-linear function
e.g., Logistic sigmoid function:

g(a) =
1

1 + e−a
=

1

1 + exp(−a)

-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

a

g
(a

)
=

 1
 /
 (

1
+

e
x
p
(-

a
))

Mapping: (−∞,+∞) → (0, 1), Use a threshold=0.5 for binary classification

d

da
g(a) = g ′(a) = g(a) (1− g(a))

25 / 30

How can we resolve the problem of training?(cont.)

• Replace g() with a differentiable non-linear function
e.g., Logistic sigmoid function:

g(a) =
1

1 + e−a
=

1

1 + exp(−a)

-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

a

g
(a

)
=

 1
 /
 (

1
+

e
x
p
(-

a
))

Mapping: (−∞,+∞) → (0, 1), Use a threshold=0.5 for binary classification

d

da
g(a) = g ′(a) = g(a) (1− g(a))

25 / 30

Output of NN – threshold func. vs sigmoid func.

26 / 30

Input-Output – demos

27 / 30

Ability of neural networks

• Universal approximation theorem

◦ “Univariate function and a set of affine functionals can uniformly approximate any
continuous function of n real variables with support in the unit hypercube; only mild
conditions are imposed on the univariate function. “ (G. Cybenko (1989)

−→
A single-output node neural network with a single hidden layer with a finite neurons
can approximate continuous (and discontinuous) functions.

◦ K. Hornik (1990) doi:10.1016/0893-6080(91)90009-T
◦ N. Guliyev, V. Ismailov (2018) https://doi.org/10.1016/j.neunet.2017.12.007
◦ V. Ismailov (2023) “A three layer neural network can represent any multivariate

function” https://doi.org/10.1016/j.jmaa.2023.127096

28 / 30

https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/j.neunet.2017.12.007
https://doi.org/10.1016/j.jmaa.2023.127096

Ability of neural networks

• Universal approximation theorem

◦ “Univariate function and a set of affine functionals can uniformly approximate any
continuous function of n real variables with support in the unit hypercube; only mild
conditions are imposed on the univariate function. “ (G. Cybenko (1989)

−→
A single-output node neural network with a single hidden layer with a finite neurons
can approximate continuous (and discontinuous) functions.

◦ K. Hornik (1990) doi:10.1016/0893-6080(91)90009-T
◦ N. Guliyev, V. Ismailov (2018) https://doi.org/10.1016/j.neunet.2017.12.007
◦ V. Ismailov (2023) “A three layer neural network can represent any multivariate

function” https://doi.org/10.1016/j.jmaa.2023.127096

28 / 30

https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/j.neunet.2017.12.007
https://doi.org/10.1016/j.jmaa.2023.127096

Ability of neural networks

• Universal approximation theorem

◦ “Univariate function and a set of affine functionals can uniformly approximate any
continuous function of n real variables with support in the unit hypercube; only mild
conditions are imposed on the univariate function. “ (G. Cybenko (1989)

−→
A single-output node neural network with a single hidden layer with a finite neurons
can approximate continuous (and discontinuous) functions.

◦ K. Hornik (1990) doi:10.1016/0893-6080(91)90009-T
◦ N. Guliyev, V. Ismailov (2018) https://doi.org/10.1016/j.neunet.2017.12.007
◦ V. Ismailov (2023) “A three layer neural network can represent any multivariate

function” https://doi.org/10.1016/j.jmaa.2023.127096

28 / 30

https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/j.neunet.2017.12.007
https://doi.org/10.1016/j.jmaa.2023.127096

Quizzes

• Answer the question of slide 16

• Find the structure of the perceptron for a two-class classification problem that
gives the decision boundaries and decision regions shown in the figure below, in
which grey areas correspond to one class, and the white areas to the other class.
You do not need to identify the weight values, but you need to describe how many
nodes are required and how each node should be connected to other nodes.

2

1

x

x

• Derive the derivative of the logistic sigmoid function

• Discuss how the decision boundary will change if you replace the Heaviside step
function in a Rosenblatt’s perceptron with a logistic sigmoid function in which you
use a threshold=0.5 for classification.

29 / 30

References

• [LWLS] Section 6.1

• Neural Networks and Deep Learning by Michael Nielsen
(http://neuralnetworksanddeeplearning.com/)

• [M1] Chapter 13

30 / 30

http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/

	Perceptron
	Structures and decision boundaries of Perceptron
	Problems with perceptron
	Extensions of Perceptron

