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Convexity on more points

If a function f is convex,
f(alxl + aoXxo + Oé3X3) <o f(Xl) + azf(Xz) + a3f(X3) (1)

for vy, a0, a3 > 0 and a1 + an + a3z = 1.

3/25



Convexity on more points (cont.)

If a function f is convex,

for a; > 0 and Z,'V:l o = 1.
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Jensen’s inequality

If a function f is convex,

F(Elx]) < E[f(x)]- (3)

F(Exp(x) [X]) < Exop( [F(X)]-

x~p(x
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® For log loss

N

NLL = log (1 + exp(—y,-wT¢(x,-))> (4)

i=1
we cannot even solve V,,NLL = 0.

(i.e. no closed-form solution)

® How do we find the optimal solution?
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Gradient descent

® Gradient descent is an iterative algorithm, consisting of the steps

w1 = we — 1 VNLL(wy). (5)

® The variable 7; > 0 is called the step size (or learning rate), and can depend on t.
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Gradient descent on log loss

® The log loss in the binary case

N
NLL = Z log (1 + exp(—y,-wa,-)>. (6)

i=1

® \We have shown that NLL is convex in w.
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Gradient descent on log loss (cont)

ONLL o~ exp(—yiw T x;)
ow 11+EXP(—YiWTx,-)

i

(—yixi)

M=1I[1]=

(1 1+ exp(iyiw'l'xi)> (—yix)

(1 - p(Yi’Xi)) (—y,-x,-)

i=1
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Gradient descent on log loss (cont)

Wiyl = Wy — T]tVNLL(Wt) (10)
o 1

= — 1-— —ViXj 11
Wil = Wt TltZ( 1—|—e><p(—y,-thx,-))( YiX;) (11)

i=1
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Gradient descent

NLL

11/25



Gradient descent

NLL

11/25



Gradient descent

NLL

11/25



Gradient descent

NLL

11/25



Gradient descent

NLL
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Approximate solutions in optimisation

® We say that X is an approximate solution of the minimiser x* if, for a given € > 0,

F(%) - F(x") < e. (12)

® Note that it is close in function value, not close in the input.

12/25



Approximate solutions for iterative algorithms

An iterative algorithm creates a sequence xi, ..., X;.
How many updates do we need to achieve an approximate solution?

Given € > 0, how large does t needs to be to achieve

f(x:) — f(x*) <e?

We want to express € as a function of t.
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Rate of convergence

o IFOxen) = FO)]

0 T ) — PN (14)

The sequence {f(x;)} is said to converge with order g to f(x*) and with a rate of
convergence [

® Forg=1
— If w =1, sublinear rate
- If0 < pu <1, linear rate

— if uw =0, superlinear rate
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Potential results

e Sublinear
c
o f(x;)—f(x*) < o
e Linear

o f(x:)—f(x*)<ecrifor0O<r<1

e Quadratic
o f(x)—f(x*)<cr? for0<r<1
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Potential results

e Sublinear

e Linear
o f(x:)—f(x*)<ecrffor0O<r<1
e c=0(2""ort=0(log?l)

e Quadratic
o f(x)—f(x*)<cr? for0<r<1

e c=0 <2_2t) or t = O(loglog 1)
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Convergence rates
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Gradient descent on mean-squared error

® The mean-squared error is

L=|Xw—yl|. (15)
® \We have shown that L is convex in w.

® We have shown that the optimal solution is (X " X) 1 X Ty.
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Gradient descent on mean-squared error (cont)

VL=2(X"Xw - X"y) (16)

Wil = Wr — ntVL(Wt) = W — nt2(XTXWt - XTy) (17)
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Runtime comparison for solving mean-squared error

® The runtime of (XTX) !XTy is O(nd?) or O(d®) (whichever dominates).
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Runtime comparison for solving mean-squared error

® The runtime of (XTX) !XTy is O(nd?) or O(d®) (whichever dominates).

® The runtime of a single gradient step wy 1 = w; — 17:2(X ' Xw; — X Ty) is O(nd).
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Convergence rates of gradient descent
on mean-squared error

® If we run gradient descent on mean-squared error, we have

L(wg) — L(w™) = %(wo —w*) (1 = nH)** H(wp — w*) (18)

where H = X T X is the Hessian of L.

e |If we choose 77 = +1—, where Amax is the largest eigenvalue of H, the convergence

. . >\ma><'
is linear.
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Stochastic gradient descent (SGD)

1. Sample x;, y; from a data set S.

2. Wiyl = Wy — ntvg(wtr Xtv.Vt)
— Per sample L; loss {(w; x,y) = (w' x; — y;)?

— Per sample log loss £(w; x,y) = log(1 + exp(—y:w ' x;))

3. Go to 1 until the solution is satisfactory.
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Stochastic gradient descent (SGD) (cont)

® V/{(wy; Xt, yt) is now random, because x; and y; is random.

® The expectation
Ex,yNU(S)[vg(W;va)] = VL(W) (19)

where U(S) is the uniform distribution over the samples in S.
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Guarantee for stochastic gradient descent

If we do SGD on an convex function,

* (12 2
_ . wy — w nB
Exy~u(s)IL(We)] — L(w™) < | ot 12 + (20)

IVl(we; x,y)||2 < B for any t, x, and y

W, = W1+.;+Wt

The runtime is O(1/+/t) if we choose n = %, independent of the data set
size n!
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Mini-batch stochastic gradient descent

1. Sample a subset S; from a data set S.
2. Wil = Wi — ntVﬁ Z&yest Uwe; x,y)
— The random sampling maintains Eg, .y (s): [Vﬁ D ox.yes, é(w;x7y)} = VL(w).

3. Go to 1 until the solution is satisfactory.
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Common practice and terminology
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Common practice and terminology

When doing SGD, permute the data and then go in serial.

A pass over the data set is called an epoch.

When doing mini-batch SGD, remember to normalise by the batch size.
With a larger batch size, we go over an epoch faster.

Use the largest batch size you can afford.
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