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Topics

• Subgraident

• Hinge loss

• Constrained optimisation problems

• Feasible solutions

• Lagrangian and Lagrange multiplier
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Subgradients for absolute values

f (x) = |x |

x

∂ |x |

1

−1

x

∂ |x | =


{−1} if x < 0
[−1, 1] if x = 0
{+1} if x > 0
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Subgradient

• A subgradient at x is a vector g that satisfies

f (y) ≥ f (x) + g⊤(y − x) (1)

for any y , and the set of subgradients at x is denoted as ∂f (x).

• Obviously, ∇f (x) ∈ ∂f (x), if ∇f (x) exists.

• Convergence theorems can be ported to subgradient descent.
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Hinge loss
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Hinge loss (cont.)

• The hinge loss is defined as (ŷ : the raw output of classifier)

ℓhinge(ŷ , y) = max(0, 1−ŷ y) (2)

for a linear classifier

ℓhinge(w ; x , y) = max(0, 1−yw⊤x). (3)

• Just like the absolute value, the hinge loss is continuous and convex, but it is not
differentiable.

∇w ℓhinge =

{
0 if yw⊤x ≥ 1

−yx if yw⊤x < 1
(4)

• When yw⊤x = 1, we can pick and choose any vector that supports the loss
function from below as the subgradient. In fact, 0 and −yx both work.
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Constrained optimisation
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Setting up a barrier
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An example optimisation-problem with constraints

• The problem

min
x

x2

s.t. − 2.5 ≤ x ≤ −0.5 (5)

is an example of a constrained optimisation problem.

• The inequality −2.5 ≤ x ≤ −0.5 is called a constraint.

• Solutions that satisfy the constraints are called feasible solutions.
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Setting up a barrier

• The problem

min
x

x2

s.t. − 2.5 ≤ x ≤ −0.5 (6)

is equivalent to

min
x

x2 + V−(x) (7)

where

V−(x) =

{
0 if −2.5 ≤ x ≤ −0.5

∞ otherwise
(8)
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An example optimisation-problem with constraints

• The problem

min
w

L(w)

s.t. ∥w∥22 ≤ 1 (9)

is an example of a constrained optimisation problem.

• The inequality ∥w∥22 ≤ 1 is called a constraint.

• Solutions that satisfy the constraints are called feasible solutions.
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Setting up a barrier

• We can write the optimisation problem as

min
w

L(w) + V−(∥w∥22 − 1), (10)

where

V−(s) =

{
0 if s ≤ 0

∞ if s > 0
. (11)

• This does not change anything; both problems are equally hard (or easy) to solve.
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Soften the constraints

• We can approximate

min
w

L(w) + V−(∥w∥22 − 1) (12)

with

min
w

L(w) + λ(∥w∥22 − 1), (13)

for some λ ≥ 0.

• Note that λs ≤ V−(s) for all s.
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Soften the constraints (cont.)
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Lagrangian

• In general, if you have a optimisation problem

min
x

f (x)

s.t. h(x) ≤ 0 (14)

the Lagrangian is defined as

f (x) + λh(x) (15)

for λ ≥ 0.

• The value λ is called the Lagrange multiplier.
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Solving the Lagrangian

• Solve g(λ) = min
x
[f (x) + λh(x)] for a particular λ.

• Find λ̂ such that min
x
[f (x) + λ̂h(x)] gives a feasible solution.

• Suppose x̂ = argmin
x

[f (x) + λ̂h(x)] and x∗ = argmin
x :h(x)≤0

f (x).

f (x̂) + λ̂h(x̂) ≤ f (x∗) + λ̂h(x∗) ≤ f (x∗) (16)
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Solving the Lagrangian (cont.)

• We want f (x̂) = f (x̂) + λ̂h(x̂) leading to f (x̂) ≤ f (x∗), so that we can conclude
f (x̂) = f (x∗).

• If we want λ̂h(x̂) = 0, then either λ̂ = 0 or h(x̂) = 0.

– When λ̂ = 0, the minimiser of f is a feasible solution already.

– When h(x̂) = 0, the minimiser of f is not necessarily a feasible solution, and we are
on the edge of a constraint.
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Example 1 - training of a word unigram model

Row, row, row your boat, gently down the stream
Merrily, merrily, merrily, merrily, life is but a dream

• There are 18 words.

• Intuitively,

p(row) =
3

18
p(merrily) =

4

18
p(is) =

1

18
(17)
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Example 1 - training of a word unigram model (cont.)

• There are 13 unique words.

• We refer to the set of unique words V = {row, your, boat, gently, down, the,
stream,merrily, life, is, but, a, dream} as the vocabulary.

• We assign each word v a probability βv .

• The probability of a word is

p(w) =
∏
v∈V

β1v=w
v . (18)

19 / 33



Example 1 - training of a word unigram model (cont.)

• We assume that each word is independent of others.

• This assumption is obviously wrong, but can go really far.

• The likelihood of β given the data is

log p(w1, . . . ,wN) = log
N∏
i=1

p(wi ) = log
N∏
i=1

∏
v∈V

β
1v=wi
v . (19)

• Since β is a probability vector, we have the assumption∑
v∈V

βv = 1. (20)
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Example 1 - training of a word unigram model (cont.)

• We arrive at the optimisation problem

min
β

−
N∑
i=1

∑
v∈V

1v=wi log βv

s.t.
∑
v∈V

βv = 1 (21)

• Its Lagrangian is

F = −
N∑
i=1

∑
v∈V

1v=wi log βv + λ

(∑
v∈V

βv − 1

)
. (22)
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Example 1 - training of a word unigram model (cont.)

• Solving the optimality condition gives

∂F

∂βk
=

N∑
i=1

1k=wi

1

βk
− λ = 0 =⇒ βk =

1

λ

N∑
i=1

1k=wi
. (23)
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Example 1 - training of a word unigram model (cont.)

∑
v∈V

βv =
∑
v∈V

1

λ

N∑
i=1

1v=wi = 1 =⇒ λ =
∑
v∈V

N∑
i=1

1v=wi = N (24)

βk =

∑N
i=1 1k=wi∑

v∈V
∑N

i=1 1v=wi

=
1

N

N∑
i=1

1k=wi
(25)
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Example 2 - finding the best projection line/hyperplane
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Projection of a vector

Projection of u onto/from v

v

u

θ

∥u∥2 cos θ = ∥u∥2
u⊤v

∥u∥2∥v∥2
=

u⊤v
∥v∥2

(26)

25 / 33



Example 2 - finding the best projection line/hyperplane (cont.)

• The projection of x onto w is x⊤w
∥w∥2 .

• If we have N data points {x1, . . . , xN}, then the sum of the (squared) projection is

N∑
i=1

(
|x⊤

i w |
∥w∥2

)2

=
w⊤X⊤Xw

w⊤w
. (27)

• The sum of squared projection can be seen as the spread of the data.
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Maximal projection
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Maximal projection (cont.)

• We want to find the maximum direction to project.

• The optimisation problem is

max
w

w⊤X⊤Xw
w⊤w

. (28)
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Maximal projection (cont.)

• The problem is scale invariant.

(aw)⊤X⊤X (aw)

(aw)⊤(aw)
=

w⊤X⊤Xw
w⊤w

. (29)

• The problem is equivalent to

max
w

w⊤X⊤Xw s.t. ∥w∥22 = 1. (30)
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Maximal projection (cont.)

• The Lagrangian is

F = w⊤X⊤Xw + λ(1− ∥w∥22). (31)

• Finding the optimal solution gives

∂F

∂w
= (X⊤X + X⊤X )w − 2λw = 0 =⇒ X⊤Xw = λw . (32)

• It turns out that λ is an eigenvalue, and w an eigenvector of X⊤X .
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Maximal projection (cont.)

• Plugging the solution back to the objective,

w⊤X⊤Xw
w⊤w

=
λw⊤w
w⊤w

= λ (33)

• Since the goal is to find the maximal projection, this is now equivalent to finding
the largest eigenvalue of X⊤X .

31 / 33



Maximal projection (cont.)

• The term

w⊤X⊤Xw
w⊤w

(34)

is called the Rayleigh quotient.

• The optimal w is called the first principal component.

• We will learn more about this when we talk about principal component analysis.
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Quizzes

• Consider a set of two-dimensional data {xi}Ni=1, where xi = (xi1, xi2)
⊤. Explain

the difference between the best projection line (defined in the slides) and linear
regression line from x1 to x2 (or from from x2 to x1).
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