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Context

Digital technologies, machine learning and
Al are revolutionising the fields of medicine,

research and public health.

1. How can we make sense from this data?

2. Is it all useful data? 1 PB =1,000TB

3. How can we make the data smaller, without losing much information?
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Learning Outcomes

. Learn about the key motivation behind the use of the PCA method
. Understand the geometrical explanation of the PCA method

. Explain steps in one of the derivations of the PCA method

. Apply the PCA method on a real dataset
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References:

1. James et al., An Introduction to Statistical Learning,
Springer, 2013. (Sections 6.3, 6.7, and 10.2)

2. Bishop, Pattern Recognition and Machine Learning,
Springer, 2008. (Section 12.1)
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Dimensionality Reduction

k<d
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Applications and Considerations

Applications of the PCA method (and many other dimensionality reduction methods)
1. Visualisation
2. Exploration

3. Compression

Key considerations:
1. Reducing the number of columns (d — k) by deletion is not meaningful.
2. Columns of Z are uncorrelated, i.e. minimal redundancy.

3. It is OK to make our variables less interpretable!
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Principal Component Analysis
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Notes

1.

We are interested in finding projections of data points that are as similar to
the original data points as possible, but which have a significantly lower
intrinsic dimensionality.

. Without loss of generality, we assume that the mean of data is zero.
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Principal Component Analysis

Xonxd =2 Znsw (k< d)

mek - medUka:
Z:[Z1Z2--.Zk] X:[X1X2-.-Xd] U:[u1u2uk]
zZ|, — Xu1

Remarks

1. Principal components are a sequence of projections of the data, mutually
uncorrelated and ordered in variance.

2. The columns u;..., of U are orthonormal, so that u/ u; = 0 if and only if i # j
and u;fpui =1.
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Key Different Perspectives to PCA

Three key approaches to PCA:
1. Maximum variance formulation (Hotelling 1933)
2. Minimum error formulation (Pearson 1901)
3. Probabilistic formulation (Tipping & Bishop 1997)
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Maximum Variance Formulation

Xonxd 2 T (k < d)

mek - meddek

ZZ[ZlZQ"'Zk] X:[X1X2"'Xd] U:[u1u2...

max Var[z;] = max Var[Xu,]

uk]
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Maximum Variance Formulation

Xonxd 2 T (k< d)

mek - meddek

ZZ[ZlZQ"'Zk] X:[X1X2"'Xd] U:[u1u2...

max Var|z;| = max Var[Xu,]

max z!z; = max uj X' Xu,
ui ui

uk]

=max ulXxu; Yx =X'X: (N x covariance of X)

ui
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Maximum Variance Formulation

Xonxd 2 T (k< d)

mek :meddek
Z:[ZIZQ---Zk] X:[X1X2...Xd] U:[u1u2...uk]

max Var|z;| = max Var[Xu,]

ui ui

max z!z; = max uj X' Xu,
ui ui

=max ulXxu; Yx =X'X: (N x covariance of X)
ui

=max ulYxu; st |wl=ulu =1
ui
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Maximum Variance Formulation
Using the Lagrange multipliers method:

L(ul, )\1) = ufZXul — )\1(11?111 - 1)

g—lfl = 22)(111 - 2)\1111 =0
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Maximum Variance Formulation
Using the Lagrange multipliers method:

L(ul, )\1) = ufZXul — )\1(11?111 - 1)

g—lfl = 22)(111 - 2)\1111 =0

Yxu; = A\u;  ~ A; and u; are an eigenvalue-eigenvector
pair of Yx
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Maximum Variance Formulation
Using the Lagrange multipliers method:

L(ul, )\1) = ufZXul — )\1(11?111 - 1)

g—lfl = 22)(111 - 2)\1111 =0

Yxu; = A\u;  ~ A; and u; are an eigenvalue-eigenvector
pair of Yx
Var(zi] = uf Sxu; = uf Ajuy = A ujuy =\
——

1
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Maximum Variance Formulation
Using Lagrange multipliers:

L(ul, )\1) = ufZXul — )\1(11?111 - 1)

g—lfl = 22)(111 - 2)\1111 =0

Yxu; = A\u;  ~ A; and u; are an eigenvalue-eigenvector
pair of Yx

Var[zl] = U{qul = 11?)\1111 = /\1 u{ul = )\1
~——
. . 1
For ZX there are d elgenvalue—elgenvector pairs:

€1 > €y > €3> - >€g
Vi Vo V3 V4
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Maximum Variance Formulation

Xonxd 2 T (k< d)

mek :meddek
Z:[ZIZQ---Zk] X:[X1X2-..Xd] U:[u1u2...uk]

The first principal direction u; must be the eigenvector of Yx that corresponds to
largest eigenvalue (e1).

Z| = Xu1 — Z1 = XV1
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Maximum Variance Formulation

Xonxd 2 T (k< d)

mek - meddek
Z:[Z1Z2"'Zk] X:[X1X2"'Xd] U:[u1u2---uk]
The first principal direction u; must be the eigenvector of Yx that corresponds to
largest eigenvalue (e1).
z1 =Xu, — z;=Xvy
- ?
What about other principal components?  zy..;, = Xuo..., = Xvo..p

Each new principal direction u; should:
® maximise Var|z;];

® be orthogonal to all other u;; extracting something new from X. 17725



Maximum Variance Formulation

Xonxd 2 T (k< d)

mek :meddek
Z:[ZIZQ---Zk] X:[X1X2-..Xd] U:[u1u2...uk]

For z: Zo — XUy

max Var[z;] = max ulYxu,
u2 u2

st. Jull=1 & ulu; =0
Zo = XUy — Zy = XVy

Because u, must be the eigenvector of Yx that corresponds to second
largest eigenvalue (e3). 1825



Summary - Maximum Variance Formulation

Xonxd 2 T (k< d)
mek - meddek - medvdxk

Z:[ZIZQ---Zk] X:[X1X2...Xd] V:[VIVQ"'Vk]

where columns of V., are the eigenvectors of ¥x = X7X.
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An example - Public Health in Scotland

Source: Scottish Public Health Observatory (ScotPHO)
Region: All 32 Councils in Scotland
Year: 2019

Data: Six indicators were extracted Labels: Employment deprivation level

Active travel to school Low v.s. High
Alcohol-related hospital admissions

Drug-related deaths

Attempted murder & serious assault

Drug crimes recorded

Smoking quit attempts

1
2
3
4
5

6
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An example - Public Health in Scotland

Data Exploration

2 3 4 5 6
: 2 N o
1) Active travel to school 1 g o g < & &
2) Alcohol-related hospital 202 .
admissions 2 0
-2
3) Drug-related deaths
3
4) Attempted murder &
serious assault
4
5) Drug crimes recorded
5

6) Smoking quit attempts
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PCA Results:

Size of Eigenvalues

Cumulative variance explained =

200

150

100

50

An example - Public Health in Scotland
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where ¢; is the i*" eigenvalue

Cumulative Variance Explained

PC2 (z9)
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PCA - Bad Applications

1. Doing PCA to avoid overfitting is a bad idea. Instead use regularisation.

2. Doing PCA to for dimensionality reduction before classification is also a bad idea.
Instead use a method called, linear discriminant analysis (LDA).

23/25



PCA Implementation

There are three (potentially four) implementations for the PCA methods. For the
centred design matrix X,,,.q with the covariance matrix Xx = %XTX

1. Eigenvector decomposition of ¥x - computational cost O(d?)
2. Singular value decomposition of Xx - computational cost O(d?)

3. Singular value decomposition of X - computational cost O(md?)

— Prove it as practice.
— Start with the singular value decomposition of X, that is X = UXx V7T

4. Eigenvector decomposition of Gram matrix KX = XX’ - computational cost
O(d?)
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PCA - Summary

A measure of how variables are
associated with each another
(Covariance matrix, ¥x).

The directions in which our data is
dispersed (Eigenvectors of ¥x).

The relative importance of these
different directions (Eigenvalues of
Yx).

PCA linearly combines our variables and allows us to drop projections that are less
informative.
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