Machine Learning Principal Component Analysis (PCA)

Kia Nazarpour

Context

Digital technologies, machine learning and Al are revolutionising the fields of medicine, research and public health.

- 1. How can we make sense from this data?
- 2. Is it all useful data?
- 3. How can we make the data smaller, without losing much information?

1 PB = 1,000 TB

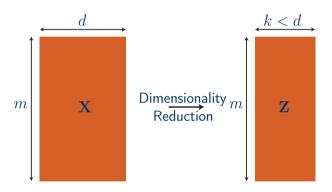
Learning Outcomes

- 1. Learn about the key motivation behind the use of the PCA method
- 2. Understand the geometrical explanation of the PCA method
- 3. Explain steps in one of the derivations of the PCA method
- 4. Apply the PCA method on a real dataset

References:

- 1. James et al., An Introduction to Statistical Learning, Springer, 2013. (Sections 6.3, 6.7, and 10.2)
- 2. Bishop, *Pattern Recognition and Machine Learning*, Springer, 2008. (Section 12.1)

Dimensionality Reduction



Applications and Considerations

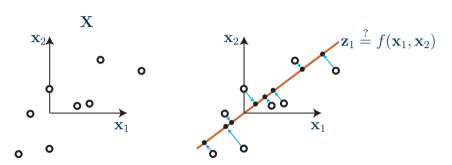
Applications of the PCA method (and many other dimensionality reduction methods)

- 1. Visualisation
- 2. Exploration
- 3. Compression

Key considerations:

- 1. Reducing the number of columns $(d \to k)$ by deletion is not meaningful.
- 2. Columns of **Z** are uncorrelated, *i.e.* minimal redundancy.
- 3. It is OK to make our variables *less interpretable!*

Principal Component Analysis



Notes

- 1. We are interested in finding projections of data points that are as similar to the original data points as possible, but which have a significantly lower intrinsic dimensionality.
- 2. Without loss of generality, we assume that the mean of data is zero.

Principal Component Analysis

$$\mathbf{X}_{m \times d} \xrightarrow{PCA} \mathbf{Z}_{m \times k} \qquad (k < d)$$

$$\mathbf{Z}_{m \times k} = \mathbf{X}_{m \times d} \mathbf{U}_{d \times k}$$

$$\mathbf{Z} = [\mathbf{z}_1 \ \mathbf{z}_2 \ \cdots \ \mathbf{z}_k] \qquad \mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_d] \qquad \mathbf{U} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k]$$

Remarks

 $z_1 = Xu_1$

- 1. Principal components are a sequence of projections of the data, mutually uncorrelated and ordered in variance.
- 2. The columns $\mathbf{u}_{1\cdots k}$ of \mathbf{U} are orthonormal, so that $\mathbf{u}_i^T\mathbf{u}_j=0$ if and only if $i\neq j$ and $\mathbf{u}_i^T\mathbf{u}_i=1$.

Key Different Perspectives to PCA

Three key approaches to PCA:

- 1. Maximum variance formulation (Hotelling 1933)
- 2. Minimum error formulation (Pearson 1901)
- 3. Probabilistic formulation (Tipping & Bishop 1997)

$$\mathbf{X}_{m \times d} \xrightarrow{PCA} \mathbf{Z}_{m \times k} \qquad (k < d)$$

$$\mathbf{Z}_{m \times k} = \mathbf{X}_{m \times d} \mathbf{U}_{d \times k}$$

$$\mathbf{Z} = [\mathbf{z}_1 \ \mathbf{z}_2 \ \cdots \ \mathbf{z}_k] \qquad \mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_d] \qquad \mathbf{U} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k]$$

$$\max_{\mathbf{u}_1} \mathbf{Var}[\mathbf{z}_1] = \max_{\mathbf{u}_1} \mathbf{Var}[\mathbf{X}\mathbf{u}_1]$$

$$\mathbf{X}_{m \times d} \xrightarrow{PCA} \mathbf{Z}_{m \times k} \qquad (k < d)$$

$$\mathbf{Z}_{m \times k} = \mathbf{X}_{m \times d} \mathbf{U}_{d \times k}$$

$$\mathbf{Z} = [\mathbf{z}_1 \ \mathbf{z}_2 \ \cdots \ \mathbf{z}_k] \qquad \mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_d] \qquad \mathbf{U} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k]$$

$$\underset{\mathbf{u}_1}{\max} \mathbf{Var}[\mathbf{z}_1] = \underset{\mathbf{u}_1}{\max} \mathbf{Var}[\mathbf{X}\mathbf{u}_1]$$

$$\underset{\mathbf{u}_1}{\max} \ \mathbf{z}_1^T \mathbf{z}_1 = \underset{\mathbf{u}_1}{\max} \ \mathbf{u}_1^T \mathbf{X}^T \mathbf{X} \mathbf{u}_1$$

$$= \underset{\mathbf{u}_1}{\max} \ \mathbf{u}_1^T \mathbf{\Sigma}_{\mathbf{X}} \mathbf{u}_1 \qquad \mathbf{\Sigma}_{\mathbf{X}} = \mathbf{X}^T \mathbf{X} \colon (\mathsf{N} \times \mathsf{covariance of } \mathbf{X})$$

$$\mathbf{X}_{m \times d} \xrightarrow{PCA} \mathbf{Z}_{m \times k} \qquad (k < d)$$

$$\mathbf{Z}_{m \times k} = \mathbf{X}_{m \times d} \mathbf{U}_{d \times k}$$

$$\mathbf{Z} = [\mathbf{z}_1 \ \mathbf{z}_2 \ \cdots \ \mathbf{z}_k] \qquad \mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_d] \qquad \mathbf{U} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k]$$

$$\underset{\mathbf{u}_1}{\text{max}} \mathbf{Var}[\mathbf{z}_1] = \underset{\mathbf{u}_1}{\text{max}} \mathbf{Var}[\mathbf{X}\mathbf{u}_1]$$

$$\underset{\mathbf{u}_1}{\text{max}} \mathbf{z}_1^T \mathbf{z}_1 = \underset{\mathbf{u}_1}{\text{max}} \mathbf{u}_1^T \mathbf{X}^T \mathbf{X} \mathbf{u}_1$$

$$= \underset{\mathbf{u}_1}{\text{max}} \mathbf{u}_1^T \mathbf{\Sigma}_{\mathbf{X}} \mathbf{u}_1 \qquad \mathbf{\Sigma}_{\mathbf{X}} = \mathbf{X}^T \mathbf{X} \text{: (N \times covariance of } \mathbf{X})$$

$$= \underset{\mathbf{u}_1}{\text{max}} \mathbf{u}_1^T \mathbf{\Sigma}_{\mathbf{X}} \mathbf{u}_1 \qquad \text{s.t.} \qquad ||\mathbf{u}_1|| = \mathbf{u}_1^T \mathbf{u}_1 = 1$$

Using the Lagrange multipliers method:

$$L(\mathbf{u}_1, \lambda_1) = \mathbf{u}_1^T \Sigma_{\mathbf{X}} \mathbf{u}_1 - \lambda_1 (\mathbf{u}_1^T \mathbf{u}_1 - 1)$$

$$\frac{\partial L}{\partial \mathbf{u}_1} = 2\Sigma_{\mathbf{X}}\mathbf{u}_1 - 2\lambda_1\mathbf{u}_1 = 0$$

Using the Lagrange multipliers method:

$$L(\mathbf{u}_1, \lambda_1) = \mathbf{u}_1^T \Sigma_{\mathbf{X}} \mathbf{u}_1 - \lambda_1 (\mathbf{u}_1^T \mathbf{u}_1 - 1)$$

$$\frac{\partial L}{\partial \mathbf{u}_1} = 2\Sigma_{\mathbf{X}}\mathbf{u}_1 - 2\lambda_1\mathbf{u}_1 = 0$$

$$\Sigma_{\mathbf{X}}\mathbf{u}_1 = \lambda_1\mathbf{u}_1 \quad \leadsto \quad \lambda_1 \text{ and } \mathbf{u}_1 \text{ are an eigenvalue-eigenvector}$$
 pair of $\Sigma_{\mathbf{X}}$

Using the Lagrange multipliers method:

$$\begin{split} L(\mathbf{u}_1,\lambda_1) &= \mathbf{u}_1^T \Sigma_{\mathbf{X}} \mathbf{u}_1 - \lambda_1 (\mathbf{u}_1^T \mathbf{u}_1 - 1) \\ \frac{\partial L}{\partial \mathbf{u}_1} &= 2 \Sigma_{\mathbf{X}} \mathbf{u}_1 - 2 \lambda_1 \mathbf{u}_1 = 0 \\ \Sigma_{\mathbf{X}} \mathbf{u}_1 &= \lambda_1 \mathbf{u}_1 \quad \leadsto \quad \lambda_1 \text{ and } \mathbf{u}_1 \text{ are an eigenvalue-eigenvector} \\ \text{pair of } \Sigma_{\mathbf{X}} \\ \text{Var}[\mathbf{z}_1] &= \mathbf{u}_1^T \Sigma_{\mathbf{X}} \mathbf{u}_1 = \mathbf{u}_1^T \lambda_1 \mathbf{u}_1 = \lambda_1 \underbrace{\mathbf{u}_1^T \mathbf{u}_1}_{1} = \lambda_1 \end{split}$$

Using Lagrange multipliers:

$$\begin{split} L(\mathbf{u}_1, \lambda_1) &= \mathbf{u}_1^T \Sigma_{\mathbf{X}} \mathbf{u}_1 - \lambda_1 (\mathbf{u}_1^T \mathbf{u}_1 - 1) \\ \frac{\partial L}{\partial \mathbf{u}_1} &= 2 \Sigma_{\mathbf{X}} \mathbf{u}_1 - 2 \lambda_1 \mathbf{u}_1 = 0 \\ \Sigma_{\mathbf{X}} \mathbf{u}_1 &= \lambda_1 \mathbf{u}_1 \quad \leadsto \quad \lambda_1 \text{ and } \mathbf{u}_1 \text{ are an eigenvalue-eigenvector} \\ \text{pair of } \Sigma_{\mathbf{X}} \\ \text{Var}[\mathbf{z}_1] &= \mathbf{u}_1^T \Sigma_{\mathbf{X}} \mathbf{u}_1 = \mathbf{u}_1^T \boldsymbol{\lambda}_1 \mathbf{u}_1 = \lambda_1 \underbrace{\mathbf{u}_1^T \mathbf{u}_1}_{1} = \lambda_1 \end{split}$$

For $\Sigma_{\mathbf{X}}$ there are d eigenvalue-eigenvector pairs:

$$\mathbf{e_1} > e_2 > e_3 > \dots > e_d$$

$$\mathbf{v_1} \quad \mathbf{v_2} \quad \mathbf{v_3} \quad \dots \quad \mathbf{v}_d$$

$$\mathbf{X}_{m \times d} \xrightarrow{PCA} \mathbf{Z}_{m \times k} \qquad (k < d)$$
$$\mathbf{Z}_{m \times k} = \mathbf{X}_{m \times d} \mathbf{U}_{d \times k}$$

$$\mathbf{Z} = [\mathbf{z}_1 \ \mathbf{z}_2 \ \cdots \ \mathbf{z}_k] \qquad \mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_d] \qquad \mathbf{U} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k]$$

The first principal direction \mathbf{u}_1 must be the eigenvector of $\Sigma_{\mathbf{X}}$ that corresponds to largest eigenvalue (e_1) .

$$\mathbf{z}_1 = \mathbf{X}\mathbf{u}_1 \quad \rightarrow \quad \mathbf{z}_1 = \mathbf{X}\mathbf{v}_1$$

$$\mathbf{X}_{m \times d} \xrightarrow{PCA} \mathbf{Z}_{m \times k} \qquad (k < d)$$
$$\mathbf{Z}_{m \times k} = \mathbf{X}_{m \times d} \mathbf{U}_{d \times k}$$

$$\mathbf{Z} = [\mathbf{z}_1 \ \mathbf{z}_2 \ \cdots \ \mathbf{z}_k] \qquad \mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_d] \qquad \mathbf{U} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k]$$

The first principal direction \mathbf{u}_1 must be the eigenvector of $\Sigma_{\mathbf{X}}$ that corresponds to largest eigenvalue (e_1) .

$$\mathbf{z}_1 = \mathbf{X}\mathbf{u}_1 \quad \rightarrow \quad \mathbf{z}_1 = \mathbf{X}\mathbf{v}_1$$

What about other principal components? $\mathbf{z}_{2\cdots k} = \mathbf{X}\mathbf{u}_{2\cdots k} \stackrel{?}{=} \mathbf{X}\mathbf{v}_{2\cdots k}$

Each new principal direction \mathbf{u}_i should:

- maximise $Var[\mathbf{z}_i]$;
- be orthogonal to all other \mathbf{u}_i ; extracting something new from \mathbf{X} .

$$\mathbf{X}_{m \times d} \xrightarrow{PCA} \mathbf{Z}_{m \times k} \qquad (k < d)$$
$$\mathbf{Z}_{m \times k} = \mathbf{X}_{m \times d} \mathbf{U}_{d \times k}$$

$$\mathbf{Z} = [\mathbf{z}_1 \ \mathbf{z}_2 \ \cdots \ \mathbf{z}_k] \qquad \mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_d] \qquad \mathbf{U} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k]$$

For \mathbf{z}_2 : $\mathbf{z}_2 = \mathbf{X}\mathbf{u}_2$

$$\max_{\mathbf{u}_2} \ \mathrm{Var}[\mathbf{z}_2] = \max_{\mathbf{u}_2} \ \mathbf{u}_2^T \Sigma_{\mathbf{X}} \mathbf{u}_2$$

s.t.
$$\|\mathbf{u}_2\| = 1$$
 & $\mathbf{u}_2^T \mathbf{u}_1 = 0$

$$\mathbf{z}_2 = \mathbf{X}\mathbf{u}_2 \rightarrow \mathbf{z}_2 = \mathbf{X}\mathbf{v}_2$$

Because \mathbf{u}_2 must be the eigenvector of $\Sigma_{\mathbf{X}}$ that corresponds to second largest eigenvalue (e_2) .

Summary - Maximum Variance Formulation

$$\mathbf{X}_{m \times d} \xrightarrow{PCA} \mathbf{Z}_{m \times k} \qquad (k < d)$$
$$\mathbf{Z}_{m \times k} = \mathbf{X}_{m \times d} \mathbf{U}_{d \times k} = \mathbf{X}_{m \times d} \mathbf{V}_{d \times k}$$

$$\mathbf{Z} = [\mathbf{z}_1 \ \mathbf{z}_2 \ \cdots \ \mathbf{z}_k] \qquad \mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_d] \qquad \mathbf{V} = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_k]$$

where columns of $V_{d\times k}$ are the eigenvectors of $\Sigma_{\mathbf{X}} = \mathbf{X}^T \mathbf{X}$.

An example - Public Health in Scotland

Source: Scottish Public Health Observatory (ScotPHO)

Region: All 32 Councils in Scotland

Year: 2019

Data: Six indicators were extracted

- 1) Active travel to school
- 2) Alcohol-related hospital admissions
- 3) Drug-related deaths
- 4) Attempted murder & serious assault
- 5) Drug crimes recorded
- 6) Smoking guit attempts

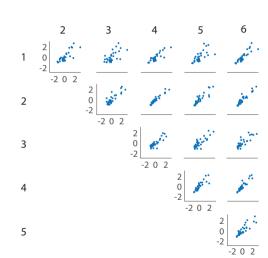
Labels: Employment deprivation level

Low v.s. High

An example - Public Health in Scotland

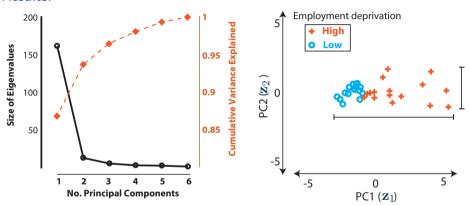
Data Exploration

- Active travel to school
 Alcohol-related hospital admissions
- 3) Drug-related deaths
- 4) Attempted murder & serious assault
- 5) Drug crimes recorded
- 6) Smoking quit attempts



An example - Public Health in Scotland

PCA Results:



Cumulative variance explained $=\frac{\sum_{i=1}^k e_i}{\sum_{i=1}^d e_i}$ where e_i is the i^{th} eigenvalue

PCA - Bad Applications

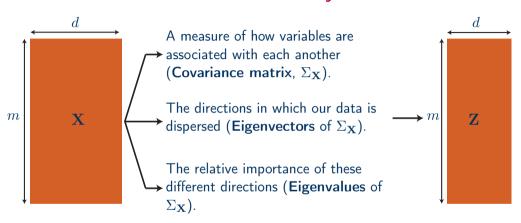
- 1. Doing PCA to avoid overfitting is a bad idea. Instead use regularisation.
- 2. Doing PCA to for dimensionality reduction before classification is also a bad idea. Instead use a method called, linear discriminant analysis (LDA).

PCA Implementation

There are three (potentially four) implementations for the PCA methods. For the centred design matrix $\mathbf{X}_{m \times d}$ with the covariance matrix $\mathbf{\Sigma}_{\mathbf{X}} = \frac{1}{m}\mathbf{X}^T\mathbf{X}$

- 1. Eigenvector decomposition of $\Sigma_{\mathbf{X}}$ computational cost $\mathcal{O}(d^3)$
- 2. Singular value decomposition of $\Sigma_{\mathbf{X}}$ computational cost $\mathcal{O}(d^3)$
- 3. Singular value decomposition of ${\bf X}$ computational cost ${\cal O}(md^2)$
 - Prove it as practice.
 - Start with the singular value decomposition of ${f X}$, that is ${f X}={f U}{f \Sigma}_{f X}{f V}^T$
- 4. Eigenvector decomposition of Gram matrix $K = \mathbf{X}\mathbf{X}^T$ computational cost $\mathcal{O}(d^3)$

PCA - Summary



PCA linearly combines our variables and allows us to drop projections that are less informative.